Yuxuan Zhang , Nicholas T. Van Dam , Hui Ai , Pengfei Xu
{"title":"额纹状体连通性动态调节对环境波动的适应。","authors":"Yuxuan Zhang , Nicholas T. Van Dam , Hui Ai , Pengfei Xu","doi":"10.1016/j.neuroimage.2025.121027","DOIUrl":null,"url":null,"abstract":"<div><div>Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"307 ","pages":"Article 121027"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontostriatal connectivity dynamically modulates the adaptation to environmental volatility\",\"authors\":\"Yuxuan Zhang , Nicholas T. Van Dam , Hui Ai , Pengfei Xu\",\"doi\":\"10.1016/j.neuroimage.2025.121027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"307 \",\"pages\":\"Article 121027\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925000291\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000291","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Frontostriatal connectivity dynamically modulates the adaptation to environmental volatility
Humans adjust their learning strategies in changing environments by estimating the volatility of the reinforcement conditions. Here, we examine how volatility affects learning and the underlying functional brain organizations using a probabilistic reward reversal learning task. We found that the order of states was critically important; participants adjusted learning rate going from volatile to stable, but not from stable to volatile environments. Subjective volatility of the environment was encoded in the striatal reward system and its dynamic connections with the prefrontal control system. Flexibility, which captures the dynamic changes of network modularity in the brain, was higher in the environmental transition from volatile to stable than from stable to volatile. These findings suggest that behavioral adaptations and dynamic brain organizations in transitions between stable and volatile environments are asymmetric, providing critical insights into the way that people adapt to changing environments.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.