Hai-Jun Liu, Jie Liu, Zhiwen Zhai, Mingqiu Dai, Feng Tian, Yongrui Wu, Jihua Tang, Yanli Lu, Haiyang Wang, David Jackson, Xiaohong Yang, Feng Qin, Mingliang Xu, Alisdair R Fernie, Zuxin Zhang, Jianbing Yan
{"title":"玉米2035:智能玉米育种的十年愿景。","authors":"Hai-Jun Liu, Jie Liu, Zhiwen Zhai, Mingqiu Dai, Feng Tian, Yongrui Wu, Jihua Tang, Yanli Lu, Haiyang Wang, David Jackson, Xiaohong Yang, Feng Qin, Mingliang Xu, Alisdair R Fernie, Zuxin Zhang, Jianbing Yan","doi":"10.1016/j.molp.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><p>Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet it faces mounting challenges in a changing world. In this review, we trace the historical successes of maize breeding which laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands. Achieving these coordinated breeding objectives requires a holistic approach to trait improvement for sustainable agriculture. We discuss cutting-edge solutions, including multi-omics approaches from single-cell analysis to holobionts, smart breeding with advanced technologies and algorithms, and the transformative potential of rational design with synthetic biology. A transition towards a data-driven future is currently underway, with large-scale precision agriculture and autonomous systems poised to revolutionize farming practice. Realizing these futuristic opportunities hinges on collaborative efforts spanning scientific discoveries, technology translations, and socioeconomic considerations in maximizing human and environmental well-being.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maize2035: A decadal vision for intelligent maize breeding.\",\"authors\":\"Hai-Jun Liu, Jie Liu, Zhiwen Zhai, Mingqiu Dai, Feng Tian, Yongrui Wu, Jihua Tang, Yanli Lu, Haiyang Wang, David Jackson, Xiaohong Yang, Feng Qin, Mingliang Xu, Alisdair R Fernie, Zuxin Zhang, Jianbing Yan\",\"doi\":\"10.1016/j.molp.2025.01.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet it faces mounting challenges in a changing world. In this review, we trace the historical successes of maize breeding which laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands. Achieving these coordinated breeding objectives requires a holistic approach to trait improvement for sustainable agriculture. We discuss cutting-edge solutions, including multi-omics approaches from single-cell analysis to holobionts, smart breeding with advanced technologies and algorithms, and the transformative potential of rational design with synthetic biology. A transition towards a data-driven future is currently underway, with large-scale precision agriculture and autonomous systems poised to revolutionize farming practice. Realizing these futuristic opportunities hinges on collaborative efforts spanning scientific discoveries, technology translations, and socioeconomic considerations in maximizing human and environmental well-being.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.01.012\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.01.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Maize2035: A decadal vision for intelligent maize breeding.
Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet it faces mounting challenges in a changing world. In this review, we trace the historical successes of maize breeding which laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands. Achieving these coordinated breeding objectives requires a holistic approach to trait improvement for sustainable agriculture. We discuss cutting-edge solutions, including multi-omics approaches from single-cell analysis to holobionts, smart breeding with advanced technologies and algorithms, and the transformative potential of rational design with synthetic biology. A transition towards a data-driven future is currently underway, with large-scale precision agriculture and autonomous systems poised to revolutionize farming practice. Realizing these futuristic opportunities hinges on collaborative efforts spanning scientific discoveries, technology translations, and socioeconomic considerations in maximizing human and environmental well-being.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.