相黄单胞菌XopAE效应物。manihotis靶向hsp20样p23 Cochaperone抑制植物基础免疫

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant-microbe Interactions Pub Date : 2025-05-01 Epub Date: 2025-06-05 DOI:10.1094/MPMI-08-24-0086-R
Diana Gómez De La Cruz, Darwin A Castillo, César A Trujillo B, Cesar A Medina, Valentina Hurtado-McCormick, Juliana Gil, Meenu Padmanabhan, Silvia Restrepo, Savithramma P Dinesh-Kumar, Hugo Germain, Camilo López, Adriana Bernal
{"title":"相黄单胞菌XopAE效应物。manihotis靶向hsp20样p23 Cochaperone抑制植物基础免疫","authors":"Diana Gómez De La Cruz, Darwin A Castillo, César A Trujillo B, Cesar A Medina, Valentina Hurtado-McCormick, Juliana Gil, Meenu Padmanabhan, Silvia Restrepo, Savithramma P Dinesh-Kumar, Hugo Germain, Camilo López, Adriana Bernal","doi":"10.1094/MPMI-08-24-0086-R","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen <i>Xanthomonas phaseoli</i> pv. <i>manihotis</i> (<i>Xpm</i>) causes devastating disease in cassava. The molecular role of Type 3 effector proteins from <i>Xpm</i> in causing disease is largely unknown. Here, we report that the XopAE effector from <i>Xpm</i> suppresses plant defense responses. Our results show that XopAE is a suppressor of basal defenses such as callose deposition and the production of reactive oxygen species. XopAE targets a small heat shock protein (<i>Me</i>p23-1 cochaperone) in cassava and its homolog <i>At</i>p23-1 in <i>Arabidopsis</i>. XopAE localizes to the nucleus and in scattered points throughout the cell border, whereas <i>Me</i>p23-1 shows a nucleocytoplasmic localization. Upon interaction, XopAE hijacks <i>Me</i>p23-1 to the scattered points throughout the cell border, and they also interact in the nucleus. Our results indicate that the interaction between XopAE and <i>Me</i>p23-1 is essential for suppressing basal plant defense. This study is one of the first to address the molecular mechanisms deployed by <i>Xpm</i> to cause disease in cassava, a non-model crop plant. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"365-375"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The XopAE Effector from <i>Xanthomonas phaseoli</i> pv. <i>manihotis</i> Targets HSP20-like p23 Cochaperone to Suppress Plant Basal Immunity.\",\"authors\":\"Diana Gómez De La Cruz, Darwin A Castillo, César A Trujillo B, Cesar A Medina, Valentina Hurtado-McCormick, Juliana Gil, Meenu Padmanabhan, Silvia Restrepo, Savithramma P Dinesh-Kumar, Hugo Germain, Camilo López, Adriana Bernal\",\"doi\":\"10.1094/MPMI-08-24-0086-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen <i>Xanthomonas phaseoli</i> pv. <i>manihotis</i> (<i>Xpm</i>) causes devastating disease in cassava. The molecular role of Type 3 effector proteins from <i>Xpm</i> in causing disease is largely unknown. Here, we report that the XopAE effector from <i>Xpm</i> suppresses plant defense responses. Our results show that XopAE is a suppressor of basal defenses such as callose deposition and the production of reactive oxygen species. XopAE targets a small heat shock protein (<i>Me</i>p23-1 cochaperone) in cassava and its homolog <i>At</i>p23-1 in <i>Arabidopsis</i>. XopAE localizes to the nucleus and in scattered points throughout the cell border, whereas <i>Me</i>p23-1 shows a nucleocytoplasmic localization. Upon interaction, XopAE hijacks <i>Me</i>p23-1 to the scattered points throughout the cell border, and they also interact in the nucleus. Our results indicate that the interaction between XopAE and <i>Me</i>p23-1 is essential for suppressing basal plant defense. This study is one of the first to address the molecular mechanisms deployed by <i>Xpm</i> to cause disease in cassava, a non-model crop plant. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>\",\"PeriodicalId\":19009,\"journal\":{\"name\":\"Molecular Plant-microbe Interactions\",\"volume\":\" \",\"pages\":\"365-375\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant-microbe Interactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1094/MPMI-08-24-0086-R\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-08-24-0086-R","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

致病菌利用3型效应蛋白操纵宿主防御,改变代谢,有利于自身的生存和传播。非模式细菌病原菌相黄单胞菌。木薯manihotis (Xpm)在木薯中引起毁灭性疾病。来自Xpm的3型效应蛋白在致病中的分子作用在很大程度上是未知的。在这里,我们报道了来自Xpm的XopAE效应抑制植物的防御反应。我们的研究结果表明,XopAE可以抑制基础防御,如胼胝质沉积和活性氧(ROS)的产生。XopAE靶向木薯中的一种小热休克蛋白(Mep23-1 cochaperone)及其同源物拟南芥中的Atp23-1。XopAE定位于细胞核和细胞边界的分散点,而Mep23-1则显示核胞质定位。相互作用后,XopAE将Mep23-1劫持到细胞边界的分散点,它们也在细胞核内相互作用。我们的研究结果表明,XopAE和Mep23-1之间的相互作用对抑制植物的基础防御至关重要。这项研究是首次探讨Xpm在木薯(一种非模式作物)中致病的分子机制之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The XopAE Effector from Xanthomonas phaseoli pv. manihotis Targets HSP20-like p23 Cochaperone to Suppress Plant Basal Immunity.

Pathogenic bacteria use Type 3 effector proteins to manipulate host defenses and alter metabolism to favor their survival and spread. The non-model bacterial pathogen Xanthomonas phaseoli pv. manihotis (Xpm) causes devastating disease in cassava. The molecular role of Type 3 effector proteins from Xpm in causing disease is largely unknown. Here, we report that the XopAE effector from Xpm suppresses plant defense responses. Our results show that XopAE is a suppressor of basal defenses such as callose deposition and the production of reactive oxygen species. XopAE targets a small heat shock protein (Mep23-1 cochaperone) in cassava and its homolog Atp23-1 in Arabidopsis. XopAE localizes to the nucleus and in scattered points throughout the cell border, whereas Mep23-1 shows a nucleocytoplasmic localization. Upon interaction, XopAE hijacks Mep23-1 to the scattered points throughout the cell border, and they also interact in the nucleus. Our results indicate that the interaction between XopAE and Mep23-1 is essential for suppressing basal plant defense. This study is one of the first to address the molecular mechanisms deployed by Xpm to cause disease in cassava, a non-model crop plant. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信