Hanno Schmidt, Lea Schick, Jürgen Podlech, Angélique Renzaho, Bettina Lieb, Stefan Diederich, Thomas Hankeln, Bodo Plachter, Oliver Kriege
{"title":"免疫功能低下患者持续感染521天期间SARS-CoV-2的适应性进化","authors":"Hanno Schmidt, Lea Schick, Jürgen Podlech, Angélique Renzaho, Bettina Lieb, Stefan Diederich, Thomas Hankeln, Bodo Plachter, Oliver Kriege","doi":"10.1038/s41525-025-00463-x","DOIUrl":null,"url":null,"abstract":"<p><p>Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"10 1","pages":"4"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739519/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient.\",\"authors\":\"Hanno Schmidt, Lea Schick, Jürgen Podlech, Angélique Renzaho, Bettina Lieb, Stefan Diederich, Thomas Hankeln, Bodo Plachter, Oliver Kriege\",\"doi\":\"10.1038/s41525-025-00463-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.</p>\",\"PeriodicalId\":19273,\"journal\":{\"name\":\"NPJ Genomic Medicine\",\"volume\":\"10 1\",\"pages\":\"4\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739519/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Genomic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41525-025-00463-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-025-00463-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Adaptive evolution of SARS-CoV-2 during a persistent infection for 521 days in an immunocompromised patient.
Immunocompromised patients struggle to adequately clear viral infections, offering the virus the opportunity to adapt to the immune system in the host. Here we present a case study of a patient undergoing allogeneic hematopoietic stem cell transplantation with a 521-day follow-up of a SARS-CoV-2 infection with the BF.7.21 variant. Virus samples from five time points were submitted to whole genome sequencing. Between the first detection of SARS-CoV-2 infection and its clearance, the patient's virus population acquired 34 amino acid substitutions and 8 deletions in coding regions. With 11 amino acid substitutions in the receptor binding domain of the virus' spike protein, substitutions were 15 times more abundant than expected for a random distribution in this highly functional region. Amongst them were the substitutions S:K417T, S:N440S, S:K444R, S:V445A, S:G446N, S:L452Q, S:N460K, and S:E484V at positions that are notorious for their resistance-mediating effects. The substitution patterns found indicate ongoing adaptive evolution.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.