台湾库蠓主要变应原cult1的鉴定与特征分析。

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuncai Bao, Guangpeng Li, Xue Lu, Tengfei Lu, Xiaohui Hou
{"title":"台湾库蠓主要变应原cult1的鉴定与特征分析。","authors":"Shuncai Bao, Guangpeng Li, Xue Lu, Tengfei Lu, Xiaohui Hou","doi":"10.1016/j.molimm.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Midges are widely distributed globally. They can transmit numerous serious diseases as well as trigger an allergic reaction in the host. Their saliva contains a variety of proteins that act as sensitizers to stimulate the host's immune response, leading to IgE-mediated allergic symptoms.</p><p><strong>Material and method: </strong>In the present study, we constructed a mouse sensitization model with the thorax extract of the Culicoides tainanus, and evaluated the sensitization model by behavior and specific antibody expression. SDS-PAGE/western blot was used to detect the binding proteins by IgE antibody in the thorax extract of the C. tainanus. The objective band was cut for mass spectrometry to preliminarily clarify the potential allergen. The pET21a-Cul t 1 recombinant expression vector was constructed and the target protein was purified by Ni affinity chromatography. The sensitizing effect of the sensitizer was verified in vitro and in vivo.</p><p><strong>Results: </strong>Immunoblot analysis revealed that a 66 kDa protein (Cul t 1) from the chest extracts of C. tainanus could bind to serum IgE of sensitized mice. Cul t 1 was further identified by fragmentation, mass spectrometry and bioinformatics as maltase, an enzyme involved in sugar digestion. In vivo validation of the Cul t 1-mouse sensitization model showed that the scratching behavior of the Cul t 1 sensitized group was significantly higher than that of the control group according to behavioral evaluation. The results of HE staining of the skin of the injected area showed that Cul t 1 sensitized group was found to have a large number of inflammatory cell infiltration and increased fibrosis in the dermis. The ELISA detection of IgE showed that the Cul t 1 sensitized group was significantly elevated from the beginning of the 28th day onwards, and the expression level of IgE had a tendency to slow down with the prolongation of the sensitization time. The ELISA assay showed that the expression level of IgG1 increased significantly in the Cul t 1 group on day 42, while the results of the specific antibody IgG2a showed that there was no significant difference in both the Cul t 1 sensitized group and the control group. The results suggest that the immune response induced by Cul t 1 sensitized mice may be shifted toward a Th2 type immune response.</p><p><strong>Conclusions: </strong>In this study, we identified the sensitizer of the C. tainanus, named Cul t 1. We successfully constructed the recombinant expression vector pET21a-Cul t 1, purified the Cul t 1 sensitizer by affinity chromatography, and verified the sensitizing effect of Cul t 1 in mice. The results laid a practicable foundation for the subsequent immune therapy of midge bites and bite control.</p>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"178 ","pages":"32-40"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and characterization of the Cul t 1 as major allergen from biting midge Culicoides tainanus.\",\"authors\":\"Shuncai Bao, Guangpeng Li, Xue Lu, Tengfei Lu, Xiaohui Hou\",\"doi\":\"10.1016/j.molimm.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Midges are widely distributed globally. They can transmit numerous serious diseases as well as trigger an allergic reaction in the host. Their saliva contains a variety of proteins that act as sensitizers to stimulate the host's immune response, leading to IgE-mediated allergic symptoms.</p><p><strong>Material and method: </strong>In the present study, we constructed a mouse sensitization model with the thorax extract of the Culicoides tainanus, and evaluated the sensitization model by behavior and specific antibody expression. SDS-PAGE/western blot was used to detect the binding proteins by IgE antibody in the thorax extract of the C. tainanus. The objective band was cut for mass spectrometry to preliminarily clarify the potential allergen. The pET21a-Cul t 1 recombinant expression vector was constructed and the target protein was purified by Ni affinity chromatography. The sensitizing effect of the sensitizer was verified in vitro and in vivo.</p><p><strong>Results: </strong>Immunoblot analysis revealed that a 66 kDa protein (Cul t 1) from the chest extracts of C. tainanus could bind to serum IgE of sensitized mice. Cul t 1 was further identified by fragmentation, mass spectrometry and bioinformatics as maltase, an enzyme involved in sugar digestion. In vivo validation of the Cul t 1-mouse sensitization model showed that the scratching behavior of the Cul t 1 sensitized group was significantly higher than that of the control group according to behavioral evaluation. The results of HE staining of the skin of the injected area showed that Cul t 1 sensitized group was found to have a large number of inflammatory cell infiltration and increased fibrosis in the dermis. The ELISA detection of IgE showed that the Cul t 1 sensitized group was significantly elevated from the beginning of the 28th day onwards, and the expression level of IgE had a tendency to slow down with the prolongation of the sensitization time. The ELISA assay showed that the expression level of IgG1 increased significantly in the Cul t 1 group on day 42, while the results of the specific antibody IgG2a showed that there was no significant difference in both the Cul t 1 sensitized group and the control group. The results suggest that the immune response induced by Cul t 1 sensitized mice may be shifted toward a Th2 type immune response.</p><p><strong>Conclusions: </strong>In this study, we identified the sensitizer of the C. tainanus, named Cul t 1. We successfully constructed the recombinant expression vector pET21a-Cul t 1, purified the Cul t 1 sensitizer by affinity chromatography, and verified the sensitizing effect of Cul t 1 in mice. The results laid a practicable foundation for the subsequent immune therapy of midge bites and bite control.</p>\",\"PeriodicalId\":18938,\"journal\":{\"name\":\"Molecular immunology\",\"volume\":\"178 \",\"pages\":\"32-40\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molimm.2025.01.004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molimm.2025.01.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:蠓在全球广泛分布。它们可以传播许多严重的疾病,并引发宿主的过敏反应。它们的唾液中含有多种蛋白质,这些蛋白质作为致敏剂刺激宿主的免疫反应,导致ige介导的过敏症状。材料与方法:本研究建立了鼠库蠓胸提取物致敏模型,并通过行为和特异性抗体表达评价模型的致敏效果。采用SDS-PAGE/western blot方法检测猪胸提取液中IgE抗体的结合蛋白。为初步查明潜在过敏原,对目标波段进行了质谱分析。构建pET21a-Cul t1重组表达载体,通过Ni亲和层析纯化目的蛋白。体外和体内实验验证了增敏剂的增敏效果。结果:免疫印迹分析显示,山参胸提物中66 kDa蛋白(Cul t1)可与致敏小鼠血清IgE结合。通过碎片化、质谱和生物信息学进一步鉴定cult1为麦芽糖酶,一种参与糖消化的酶。对Cul t1致敏小鼠模型进行体内验证,根据行为评价,Cul t1致敏组的抓痒行为显著高于对照组。注射区皮肤HE染色结果显示,Cul t1致敏组真皮内有大量炎性细胞浸润,纤维化增多。ELISA检测IgE结果显示,Cul t1致敏组从第28天开始显著升高,且随着致敏时间的延长,IgE表达水平有减慢的趋势。ELISA检测结果显示,Cul t1致敏组第42天IgG1表达水平显著升高,而特异性抗体IgG2a结果显示Cul t1致敏组与对照组无显著差异。结果提示cult1致敏小鼠的免疫反应可能向Th2型免疫反应转变。结论:在本研究中,我们鉴定了C. tainanus的致敏剂,命名为Cul t1。我们成功构建了重组表达载体pET21a-Cul t1,通过亲和层析纯化了Cul t1增敏剂,并在小鼠体内验证了Cul t1的增敏效果。研究结果为后续免疫治疗及蚊虫叮咬控制奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and characterization of the Cul t 1 as major allergen from biting midge Culicoides tainanus.

Background: Midges are widely distributed globally. They can transmit numerous serious diseases as well as trigger an allergic reaction in the host. Their saliva contains a variety of proteins that act as sensitizers to stimulate the host's immune response, leading to IgE-mediated allergic symptoms.

Material and method: In the present study, we constructed a mouse sensitization model with the thorax extract of the Culicoides tainanus, and evaluated the sensitization model by behavior and specific antibody expression. SDS-PAGE/western blot was used to detect the binding proteins by IgE antibody in the thorax extract of the C. tainanus. The objective band was cut for mass spectrometry to preliminarily clarify the potential allergen. The pET21a-Cul t 1 recombinant expression vector was constructed and the target protein was purified by Ni affinity chromatography. The sensitizing effect of the sensitizer was verified in vitro and in vivo.

Results: Immunoblot analysis revealed that a 66 kDa protein (Cul t 1) from the chest extracts of C. tainanus could bind to serum IgE of sensitized mice. Cul t 1 was further identified by fragmentation, mass spectrometry and bioinformatics as maltase, an enzyme involved in sugar digestion. In vivo validation of the Cul t 1-mouse sensitization model showed that the scratching behavior of the Cul t 1 sensitized group was significantly higher than that of the control group according to behavioral evaluation. The results of HE staining of the skin of the injected area showed that Cul t 1 sensitized group was found to have a large number of inflammatory cell infiltration and increased fibrosis in the dermis. The ELISA detection of IgE showed that the Cul t 1 sensitized group was significantly elevated from the beginning of the 28th day onwards, and the expression level of IgE had a tendency to slow down with the prolongation of the sensitization time. The ELISA assay showed that the expression level of IgG1 increased significantly in the Cul t 1 group on day 42, while the results of the specific antibody IgG2a showed that there was no significant difference in both the Cul t 1 sensitized group and the control group. The results suggest that the immune response induced by Cul t 1 sensitized mice may be shifted toward a Th2 type immune response.

Conclusions: In this study, we identified the sensitizer of the C. tainanus, named Cul t 1. We successfully constructed the recombinant expression vector pET21a-Cul t 1, purified the Cul t 1 sensitizer by affinity chromatography, and verified the sensitizing effect of Cul t 1 in mice. The results laid a practicable foundation for the subsequent immune therapy of midge bites and bite control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular immunology
Molecular immunology 医学-免疫学
CiteScore
6.90
自引率
2.80%
发文量
324
审稿时长
50 days
期刊介绍: Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to: Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology Mechanisms of induction, regulation and termination of innate and adaptive immunity Intercellular communication, cooperation and regulation Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc) Mechanisms of action of the cells and molecules of the immune system Structural analysis Development of the immune system Comparative immunology and evolution of the immune system "Omics" studies and bioinformatics Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc) Technical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信