晶格化和能带工程实现了n型Bi2Te3的高热电冷却和高产能。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-12-06 eCollection Date: 2025-02-01 DOI:10.1093/nsr/nwae448
Dongrui Liu, Shulin Bai, Yi Wen, Jiayi Peng, Shibo Liu, Haonan Shi, Yichen Li, Tao Hong, Huiqiang Liang, Yongxin Qin, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Qing Tan, Bingchao Qin, Li-Dong Zhao
{"title":"晶格化和能带工程实现了n型Bi2Te3的高热电冷却和高产能。","authors":"Dongrui Liu, Shulin Bai, Yi Wen, Jiayi Peng, Shibo Liu, Haonan Shi, Yichen Li, Tao Hong, Huiqiang Liang, Yongxin Qin, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Qing Tan, Bingchao Qin, Li-Dong Zhao","doi":"10.1093/nsr/nwae448","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. Bi<sub>2</sub>Te<sub>3</sub> exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi<sub>2</sub>(Te, Se)<sub>3</sub> (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands. Meanwhile, the interstitial Cu can bond with the BTS matrix to form extra electron transport pathways. The multiple occupations of Cu substantially boost carrier mobility and electrical performance. Consequently, the BTS + 0.2%Cu achieves a room-temperature <i>ZT</i> of ∼1.3 with an average <i>ZT</i> <sub>ave</sub> of ∼1.2 at 300-523 K. Moreover, the kilogram-scale ingot designed for mass production also exhibits high uniformity. Finally, we fabricate a full-scale device that achieves an excellent conversion efficiency of ∼6.4% and a high cooling Δ<i>T</i> <sub>max</sub> of ∼70.1 K, both of which outperform commercial devices.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae448"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lattice plainification and band engineering lead to high thermoelectric cooling and power generation in n-type Bi<sub>2</sub>Te<sub>3</sub> with mass production.\",\"authors\":\"Dongrui Liu, Shulin Bai, Yi Wen, Jiayi Peng, Shibo Liu, Haonan Shi, Yichen Li, Tao Hong, Huiqiang Liang, Yongxin Qin, Lizhong Su, Xin Qian, Dongyang Wang, Xiang Gao, Zhihai Ding, Qian Cao, Qing Tan, Bingchao Qin, Li-Dong Zhao\",\"doi\":\"10.1093/nsr/nwae448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. Bi<sub>2</sub>Te<sub>3</sub> exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi<sub>2</sub>(Te, Se)<sub>3</sub> (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands. Meanwhile, the interstitial Cu can bond with the BTS matrix to form extra electron transport pathways. The multiple occupations of Cu substantially boost carrier mobility and electrical performance. Consequently, the BTS + 0.2%Cu achieves a room-temperature <i>ZT</i> of ∼1.3 with an average <i>ZT</i> <sub>ave</sub> of ∼1.2 at 300-523 K. Moreover, the kilogram-scale ingot designed for mass production also exhibits high uniformity. Finally, we fabricate a full-scale device that achieves an excellent conversion efficiency of ∼6.4% and a high cooling Δ<i>T</i> <sub>max</sub> of ∼70.1 K, both of which outperform commercial devices.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 2\",\"pages\":\"nwae448\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae448\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae448","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热电材料可以在热能和电能之间相互转换,确保其在发电和固态冷却方面的利用。Bi2Te3表现出良好的室温性能,使其成为迄今为止唯一的商用热电材料。在晶格平化策略的指导下,我们在n型Bi2(Te, Se)3 (BTS)中引入微量的Cu来占据Bi空位,从而同时减弱缺陷散射和调制电子能带。同时,间隙Cu可以与BTS基体结合形成额外的电子传递途径。铜的多重占据极大地提高了载流子的迁移率和电性能。因此,BTS + 0.2%Cu的室温ZT为~ 1.3,在300-523 K时的平均ZT为~ 1.2。此外,为批量生产而设计的公斤级铸锭也具有很高的均匀性。最后,我们制造了一个全尺寸的器件,实现了优异的转换效率(~ 6.4%)和高冷却ΔT max (~ 70.1 K),两者都优于商用器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice plainification and band engineering lead to high thermoelectric cooling and power generation in n-type Bi2Te3 with mass production.

Thermoelectrics can mutually convert between thermal and electrical energy, ensuring its utilization in both power generation and solid-state cooling. Bi2Te3 exhibits promising room-temperature performance, making it the sole commercially available thermoelectrics to date. Guided by the lattice plainification strategy, we introduce trace amounts of Cu into n-type Bi2(Te, Se)3 (BTS) to occupy Bi vacancies, thereby simultaneously weakening defect scattering and modulating the electronic bands. Meanwhile, the interstitial Cu can bond with the BTS matrix to form extra electron transport pathways. The multiple occupations of Cu substantially boost carrier mobility and electrical performance. Consequently, the BTS + 0.2%Cu achieves a room-temperature ZT of ∼1.3 with an average ZT ave of ∼1.2 at 300-523 K. Moreover, the kilogram-scale ingot designed for mass production also exhibits high uniformity. Finally, we fabricate a full-scale device that achieves an excellent conversion efficiency of ∼6.4% and a high cooling ΔT max of ∼70.1 K, both of which outperform commercial devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信