{"title":"控制叶片卷曲的arl1位点的鉴定及其在玉米育种中的应用。","authors":"Meng Yang, Aihua Huang, Renlai Wen, Shuyun Tian, Runxiu Mo, Ruining Zhai, Xue Gong, Xueyin He, Faqiao Li, Xiaohong Yang, Kaijian Huang, Wenkang Chen, Chenglin Zou","doi":"10.1007/s11032-024-01534-0","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize <i>abaxially rolled leaf1</i> (<i>arl1</i>) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the <i>arl1</i> mutant. Bulk segregation analysis mapping in an F<sub>2</sub> population derived from a single cross between <i>arl1</i> and inbred line Gui18421 with normal leaves identified the <i>arl1</i> locus on chromosome 2. Sequential fine-mapping delimited the <i>arl1</i> locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between <i>arl1</i> and Gui18421 identified an 8-bp insertion in the coding region of <i>Zm00001eb082500</i>, which led to a frame shift causing premature transcription termination in <i>arl1</i> mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that <i>Zm00001eb082520</i> was present in Gui18421 but was absent in <i>arl1</i>. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NIL<sup>Gui18421</sup>) and the <i>arl1</i> allele (NIL <sup><i>arl1</i></sup> ) were developed, and the leaves of NIL <sup><i>arl1</i></sup> plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NIL<sup>Gui18421</sup> plants under high-density planting. Furthermore, NIL <sup><i>arl1</i></sup> had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NIL<sup>Gui18421</sup>, and the grain yield of NIL <sup><i>arl1</i></sup> was not affected as the planting density increased, suggesting that the <i>arl1</i> locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of <i>arl1</i> and evaluation of yield-related traits for NIL<sup>Gui18421</sup> and NIL <sup><i>arl1</i></sup> provide an excellent target for future maize improvement.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01534-0.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"9"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of the <i>arl1</i> locus controlling leaf rolling and its application in maize breeding.\",\"authors\":\"Meng Yang, Aihua Huang, Renlai Wen, Shuyun Tian, Runxiu Mo, Ruining Zhai, Xue Gong, Xueyin He, Faqiao Li, Xiaohong Yang, Kaijian Huang, Wenkang Chen, Chenglin Zou\",\"doi\":\"10.1007/s11032-024-01534-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize <i>abaxially rolled leaf1</i> (<i>arl1</i>) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the <i>arl1</i> mutant. Bulk segregation analysis mapping in an F<sub>2</sub> population derived from a single cross between <i>arl1</i> and inbred line Gui18421 with normal leaves identified the <i>arl1</i> locus on chromosome 2. Sequential fine-mapping delimited the <i>arl1</i> locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between <i>arl1</i> and Gui18421 identified an 8-bp insertion in the coding region of <i>Zm00001eb082500</i>, which led to a frame shift causing premature transcription termination in <i>arl1</i> mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that <i>Zm00001eb082520</i> was present in Gui18421 but was absent in <i>arl1</i>. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NIL<sup>Gui18421</sup>) and the <i>arl1</i> allele (NIL <sup><i>arl1</i></sup> ) were developed, and the leaves of NIL <sup><i>arl1</i></sup> plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NIL<sup>Gui18421</sup> plants under high-density planting. Furthermore, NIL <sup><i>arl1</i></sup> had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NIL<sup>Gui18421</sup>, and the grain yield of NIL <sup><i>arl1</i></sup> was not affected as the planting density increased, suggesting that the <i>arl1</i> locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of <i>arl1</i> and evaluation of yield-related traits for NIL<sup>Gui18421</sup> and NIL <sup><i>arl1</i></sup> provide an excellent target for future maize improvement.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01534-0.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 1\",\"pages\":\"9\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-024-01534-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01534-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification of the arl1 locus controlling leaf rolling and its application in maize breeding.
Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize abaxially rolled leaf1 (arl1) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the arl1 mutant. Bulk segregation analysis mapping in an F2 population derived from a single cross between arl1 and inbred line Gui18421 with normal leaves identified the arl1 locus on chromosome 2. Sequential fine-mapping delimited the arl1 locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between arl1 and Gui18421 identified an 8-bp insertion in the coding region of Zm00001eb082500, which led to a frame shift causing premature transcription termination in arl1 mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that Zm00001eb082520 was present in Gui18421 but was absent in arl1. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NILGui18421) and the arl1 allele (NIL arl1 ) were developed, and the leaves of NIL arl1 plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NILGui18421 plants under high-density planting. Furthermore, NIL arl1 had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NILGui18421, and the grain yield of NIL arl1 was not affected as the planting density increased, suggesting that the arl1 locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of arl1 and evaluation of yield-related traits for NILGui18421 and NIL arl1 provide an excellent target for future maize improvement.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01534-0.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.