控制叶片卷曲的arl1位点的鉴定及其在玉米育种中的应用。

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-01-05 eCollection Date: 2025-01-01 DOI:10.1007/s11032-024-01534-0
Meng Yang, Aihua Huang, Renlai Wen, Shuyun Tian, Runxiu Mo, Ruining Zhai, Xue Gong, Xueyin He, Faqiao Li, Xiaohong Yang, Kaijian Huang, Wenkang Chen, Chenglin Zou
{"title":"控制叶片卷曲的arl1位点的鉴定及其在玉米育种中的应用。","authors":"Meng Yang, Aihua Huang, Renlai Wen, Shuyun Tian, Runxiu Mo, Ruining Zhai, Xue Gong, Xueyin He, Faqiao Li, Xiaohong Yang, Kaijian Huang, Wenkang Chen, Chenglin Zou","doi":"10.1007/s11032-024-01534-0","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize <i>abaxially rolled leaf1</i> (<i>arl1</i>) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the <i>arl1</i> mutant. Bulk segregation analysis mapping in an F<sub>2</sub> population derived from a single cross between <i>arl1</i> and inbred line Gui18421 with normal leaves identified the <i>arl1</i> locus on chromosome 2. Sequential fine-mapping delimited the <i>arl1</i> locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between <i>arl1</i> and Gui18421 identified an 8-bp insertion in the coding region of <i>Zm00001eb082500</i>, which led to a frame shift causing premature transcription termination in <i>arl1</i> mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that <i>Zm00001eb082520</i> was present in Gui18421 but was absent in <i>arl1</i>. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NIL<sup>Gui18421</sup>) and the <i>arl1</i> allele (NIL <sup><i>arl1</i></sup> ) were developed, and the leaves of NIL <sup><i>arl1</i></sup> plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NIL<sup>Gui18421</sup> plants under high-density planting. Furthermore, NIL <sup><i>arl1</i></sup> had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NIL<sup>Gui18421</sup>, and the grain yield of NIL <sup><i>arl1</i></sup> was not affected as the planting density increased, suggesting that the <i>arl1</i> locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of <i>arl1</i> and evaluation of yield-related traits for NIL<sup>Gui18421</sup> and NIL <sup><i>arl1</i></sup> provide an excellent target for future maize improvement.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01534-0.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"9"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of the <i>arl1</i> locus controlling leaf rolling and its application in maize breeding.\",\"authors\":\"Meng Yang, Aihua Huang, Renlai Wen, Shuyun Tian, Runxiu Mo, Ruining Zhai, Xue Gong, Xueyin He, Faqiao Li, Xiaohong Yang, Kaijian Huang, Wenkang Chen, Chenglin Zou\",\"doi\":\"10.1007/s11032-024-01534-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize <i>abaxially rolled leaf1</i> (<i>arl1</i>) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the <i>arl1</i> mutant. Bulk segregation analysis mapping in an F<sub>2</sub> population derived from a single cross between <i>arl1</i> and inbred line Gui18421 with normal leaves identified the <i>arl1</i> locus on chromosome 2. Sequential fine-mapping delimited the <i>arl1</i> locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between <i>arl1</i> and Gui18421 identified an 8-bp insertion in the coding region of <i>Zm00001eb082500</i>, which led to a frame shift causing premature transcription termination in <i>arl1</i> mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that <i>Zm00001eb082520</i> was present in Gui18421 but was absent in <i>arl1</i>. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NIL<sup>Gui18421</sup>) and the <i>arl1</i> allele (NIL <sup><i>arl1</i></sup> ) were developed, and the leaves of NIL <sup><i>arl1</i></sup> plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NIL<sup>Gui18421</sup> plants under high-density planting. Furthermore, NIL <sup><i>arl1</i></sup> had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NIL<sup>Gui18421</sup>, and the grain yield of NIL <sup><i>arl1</i></sup> was not affected as the planting density increased, suggesting that the <i>arl1</i> locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of <i>arl1</i> and evaluation of yield-related traits for NIL<sup>Gui18421</sup> and NIL <sup><i>arl1</i></sup> provide an excellent target for future maize improvement.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01534-0.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 1\",\"pages\":\"9\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-024-01534-0\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01534-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

增加种植密度是提高玉米产量的最重要策略之一。适度卷叶可减少叶片的相互遮阳,提高种群的光合作用,从而提高对高密度种植的耐受性。然而,控制玉米卷叶的基因很少被发现,它们在育种计划中的适用性仍不清楚。本研究鉴定了一株玉米叶片极倒转的arl1突变体,发现arl1突变体叶片正面的球状细胞体积增大。在arl1与正常叶片自交系Gui18421单交的F2群体中,通过群体分离分析定位,在2号染色体上发现了arl1位点。序列精细定位将arl1位点划分为包含三个候选基因的233.56 kb基因组区间。对arl1和Gui18421的序列比对发现,在Zm00001eb082500的编码区有一个8 bp的插入,导致帧移位,导致arl1突变体的转录过早终止。同时,深度测序和Sanger测序均显示,Zm00001eb082520在Gui18421中存在,而在arl1中不存在。培育了一对携带Gui18421等位基因(NILGui18421)和arl1等位基因(NIL arl1)的近等基因系(NILs),在高密度种植条件下,NIL arl1植株的叶片在中下冠层的透光率和光合速率均高于NILGui18421植株。与NILGui18421相比,NIL arl1的结实率更高,穗粒数更多,穗粒重增加,且产量不受种植密度的影响,表明该基因座可用于高密度种植耐受性的遗传改良。综上所述,NILGui18421和NIL arl1的鉴定和产量相关性状的评价为未来玉米改良提供了一个极好的目标。补充资料:在线版本提供补充资料,网址为10.1007/s11032-024-01534-0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of the arl1 locus controlling leaf rolling and its application in maize breeding.

Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear. Here we identified a maize abaxially rolled leaf1 (arl1) mutant with extreme abaxially rolled leaves and found that the size of the bulliform cells within the adaxial leaf blade surface increased in the arl1 mutant. Bulk segregation analysis mapping in an F2 population derived from a single cross between arl1 and inbred line Gui18421 with normal leaves identified the arl1 locus on chromosome 2. Sequential fine-mapping delimited the arl1 locus to a 233.56-kb genomic interval containing three candidate genes. Sequence alignment between arl1 and Gui18421 identified an 8-bp insertion in the coding region of Zm00001eb082500, which led to a frame shift causing premature transcription termination in arl1 mutant. Meanwhile, both deep sequencing and Sanger sequencing showed that Zm00001eb082520 was present in Gui18421 but was absent in arl1. A pair of near isogenic lines (NILs) carrying the Gui18421 allele (NILGui18421) and the arl1 allele (NIL arl1 ) were developed, and the leaves of NIL arl1 plants had greater light transmission and photosynthetic rate in the middle and lower canopy than did those of NILGui18421 plants under high-density planting. Furthermore, NIL arl1 had a higher seed setting rate, more kernels per ear, and an increased kernel weight per ear than NILGui18421, and the grain yield of NIL arl1 was not affected as the planting density increased, suggesting that the arl1 locus can be used for genetic improvement of high-density planting tolerance. Taken together, the identification of arl1 and evaluation of yield-related traits for NILGui18421 and NIL arl1 provide an excellent target for future maize improvement.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01534-0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信