Bo-Cheng Guo, Yi-Rong Zhang, Zhi-Guang Liu, Xin-Chu Li, Ze Yu, Bo-Ya Ping, Ya-Qiang Sun, Harrold van den Burg, Feng-Wang Ma, Tao Zhao
{"title":"破译植物NLR基因组进化:Synteny-Informed分类揭示TNL基因丢失的见解。","authors":"Bo-Cheng Guo, Yi-Rong Zhang, Zhi-Guang Liu, Xin-Chu Li, Ze Yu, Bo-Ya Ping, Ya-Qiang Sun, Harrold van den Burg, Feng-Wang Ma, Tao Zhao","doi":"10.1093/molbev/msaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789945/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering Plant NLR Genomic Evolution: Synteny-Informed Classification Unveils Insights into TNL Gene Loss.\",\"authors\":\"Bo-Cheng Guo, Yi-Rong Zhang, Zhi-Guang Liu, Xin-Chu Li, Ze Yu, Bo-Ya Ping, Ya-Qiang Sun, Harrold van den Burg, Feng-Wang Ma, Tao Zhao\",\"doi\":\"10.1093/molbev/msaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789945/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msaf015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nucleotide-binding leucine-rich repeat receptor (NLR) genes encode a pivotal class of plant immune receptors. However, their rampant duplication and loss have made inferring their genomic evolutionary trajectory difficult, exemplified by the loss of TNL family genes in monocots. In this study, we introduce a novel classification system for angiosperm NLR genes, grounded in network analysis of microsynteny information. This refined classification categorizes these genes into five classes: CNL_A, CNL_B, CNL_C, TNL, and RNL. Compared to the previous classification, we further subdivided CNLs into three subclasses. The credibility of this classification is supported by phylogenetic analysis and examination of protein domain structures. Importantly, this classification enabled a model to explain the extinction of TNL genes in monocots. Compelling microsynteny evidence underscores this revelation, indicating a clear synteny correspondence between the non-TNLs in monocots and the extinct TNL subclass. Our study provides crucial insights into the genomic origin and divergence of plant NLR subfamilies, unveiling the malleability-driven journey that has shaped the functionality and diversity of plant NLR genes.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.