基于有限元的纳米机械谐振器非线性动态优化。

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Zichao Li, Farbod Alijani, Ali Sarafraz, Minxing Xu, Richard A Norte, Alejandro M Aragón, Peter G Steeneken
{"title":"基于有限元的纳米机械谐振器非线性动态优化。","authors":"Zichao Li, Farbod Alijani, Ali Sarafraz, Minxing Xu, Richard A Norte, Alejandro M Aragón, Peter G Steeneken","doi":"10.1038/s41378-024-00854-7","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators. The resulting methodology is used to optimize the support design of high-stress nanomechanical Si<sub>3</sub>N<sub>4</sub> string resonators, in the presence of conflicting objectives such as simultaneous enhancement of Q-factor and nonlinear Duffing constant. To that end, we generate Pareto frontiers that highlight the trade-offs between optimization objectives and validate the results both numerically and experimentally. To further demonstrate the capability of multi-objective optimization for practical design challenges, we simultaneously optimize the design of nanoresonators for three key figure-of-merits in resonant sensing: power consumption, sensitivity and response time. The presented methodology can facilitate and accelerate designing (nano) mechanical resonators with optimized performance for a wide variety of applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"16"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746933/pdf/","citationCount":"0","resultStr":"{\"title\":\"Finite element-based nonlinear dynamic optimization of nanomechanical resonators.\",\"authors\":\"Zichao Li, Farbod Alijani, Ali Sarafraz, Minxing Xu, Richard A Norte, Alejandro M Aragón, Peter G Steeneken\",\"doi\":\"10.1038/s41378-024-00854-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators. The resulting methodology is used to optimize the support design of high-stress nanomechanical Si<sub>3</sub>N<sub>4</sub> string resonators, in the presence of conflicting objectives such as simultaneous enhancement of Q-factor and nonlinear Duffing constant. To that end, we generate Pareto frontiers that highlight the trade-offs between optimization objectives and validate the results both numerically and experimentally. To further demonstrate the capability of multi-objective optimization for practical design challenges, we simultaneously optimize the design of nanoresonators for three key figure-of-merits in resonant sensing: power consumption, sensitivity and response time. The presented methodology can facilitate and accelerate designing (nano) mechanical resonators with optimized performance for a wide variety of applications.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"16\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11746933/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00854-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00854-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

利用有限元方法生成非线性降阶模型(ROMs)的计算技术的出现,促进了机械谐振器的非线性动态模拟。然而,设计具有特定非线性特性的器件仍然效率低下,因为它需要手动调整设计参数,并可能导致次优设计。在这里,我们将基于fe的非线性ROM技术与无导数优化算法相结合,以实现非线性机械谐振器的设计。该方法被用于优化高应力纳米Si3N4弦谐振器的支撑设计,以同时提高q因子和非线性Duffing常数为目标。为此,我们生成了帕累托边界,突出了优化目标之间的权衡,并在数值和实验上验证了结果。为了进一步证明多目标优化在实际设计挑战中的能力,我们同时优化了纳米谐振器在谐振传感中的三个关键优点:功耗、灵敏度和响应时间。所提出的方法可以促进和加速设计具有优化性能的(纳米)机械谐振器,适用于各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element-based nonlinear dynamic optimization of nanomechanical resonators.

Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators. The resulting methodology is used to optimize the support design of high-stress nanomechanical Si3N4 string resonators, in the presence of conflicting objectives such as simultaneous enhancement of Q-factor and nonlinear Duffing constant. To that end, we generate Pareto frontiers that highlight the trade-offs between optimization objectives and validate the results both numerically and experimentally. To further demonstrate the capability of multi-objective optimization for practical design challenges, we simultaneously optimize the design of nanoresonators for three key figure-of-merits in resonant sensing: power consumption, sensitivity and response time. The presented methodology can facilitate and accelerate designing (nano) mechanical resonators with optimized performance for a wide variety of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信