研究全反式维甲酸聚己内酯(atRA-PCL)微粒如何改变3D打印纤维蛋白结构的材料特性。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maria V Hangad, Alejandro Forigua, Kali Scheck, Stephanie M Willerth, Katherine S Elvira
{"title":"研究全反式维甲酸聚己内酯(atRA-PCL)微粒如何改变3D打印纤维蛋白结构的材料特性。","authors":"Maria V Hangad, Alejandro Forigua, Kali Scheck, Stephanie M Willerth, Katherine S Elvira","doi":"10.1002/mabi.202400464","DOIUrl":null,"url":null,"abstract":"<p><p>The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.9 ± 5.0%), and incorporate them into fibrin constructs to investigate their effect on the material properties. An encapsulation that is around 25-35% higher than the current state of the art batch methods is achieved. It is also found that the drug loading concentration affects the microparticle size, which can be controlled using the microfluidic platform. It is shown that the release of atRA is slower in fibrin constructs than in buffer, and that the presence of atRA in the microparticles modulates both the degradation and the rheological properties of the constructs. Finally, it is shown that the fibrin material exhibits a stronger solid-like state in the presence of atRA-PCL microparticles. These findings establish a basis for understanding the interplay between drug-releasing microparticles and scaffold materials, paving the way for bioinks that achieve tailored degradation and mechanical properties, together with sustained drug delivery for tissue engineering applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400464"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating How All-Trans Retinoic Acid Polycaprolactone (atRA-PCL) Microparticles Alter the Material Properties of 3D Printed Fibrin Constructs.\",\"authors\":\"Maria V Hangad, Alejandro Forigua, Kali Scheck, Stephanie M Willerth, Katherine S Elvira\",\"doi\":\"10.1002/mabi.202400464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.9 ± 5.0%), and incorporate them into fibrin constructs to investigate their effect on the material properties. An encapsulation that is around 25-35% higher than the current state of the art batch methods is achieved. It is also found that the drug loading concentration affects the microparticle size, which can be controlled using the microfluidic platform. It is shown that the release of atRA is slower in fibrin constructs than in buffer, and that the presence of atRA in the microparticles modulates both the degradation and the rheological properties of the constructs. Finally, it is shown that the fibrin material exhibits a stronger solid-like state in the presence of atRA-PCL microparticles. These findings establish a basis for understanding the interplay between drug-releasing microparticles and scaffold materials, paving the way for bioinks that achieve tailored degradation and mechanical properties, together with sustained drug delivery for tissue engineering applications.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400464\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400464\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400464","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人体组织结构的3D打印需要精心设计的生物墨水来支持细胞的生长和功能。这里显示了一个额外的参数是药物释放微粒如何影响支架的材料特性。利用微流控平台制备具有高包封效率(85.9±5.0%)的全反式维甲酸(atRA)聚己内酯(PCL)微颗粒,并将其纳入纤维蛋白构建体中,研究其对材料性能的影响。实现了比当前批处理方法高约25-35%的封装。同时发现载药浓度对微颗粒大小也有影响,微颗粒大小可以通过微流控平台进行控制。结果表明,atRA在纤维蛋白构建体中的释放速度比缓冲液慢,并且atRA在微粒中的存在调节了构建体的降解和流变特性。最后,表明纤维蛋白材料在atRA-PCL微粒的存在下表现出更强的固体状状态。这些发现为理解药物释放微粒和支架材料之间的相互作用奠定了基础,为实现定制降解和机械性能的生物墨水铺平了道路,并为组织工程应用提供了持续的药物输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating How All-Trans Retinoic Acid Polycaprolactone (atRA-PCL) Microparticles Alter the Material Properties of 3D Printed Fibrin Constructs.

The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.9 ± 5.0%), and incorporate them into fibrin constructs to investigate their effect on the material properties. An encapsulation that is around 25-35% higher than the current state of the art batch methods is achieved. It is also found that the drug loading concentration affects the microparticle size, which can be controlled using the microfluidic platform. It is shown that the release of atRA is slower in fibrin constructs than in buffer, and that the presence of atRA in the microparticles modulates both the degradation and the rheological properties of the constructs. Finally, it is shown that the fibrin material exhibits a stronger solid-like state in the presence of atRA-PCL microparticles. These findings establish a basis for understanding the interplay between drug-releasing microparticles and scaffold materials, paving the way for bioinks that achieve tailored degradation and mechanical properties, together with sustained drug delivery for tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信