CP/HA/HGF导电复合支架协同电刺激神经再生。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yahao Ma, Cong Wang, Jun Li, Pengfei Xie, Longyou Xiao, Seeram Ramakrishna, Nuan Chen, Xiaoying Wang, Liumin He
{"title":"CP/HA/HGF导电复合支架协同电刺激神经再生。","authors":"Yahao Ma, Cong Wang, Jun Li, Pengfei Xie, Longyou Xiao, Seeram Ramakrishna, Nuan Chen, Xiaoying Wang, Liumin He","doi":"10.1002/mabi.202400265","DOIUrl":null,"url":null,"abstract":"<p><p>The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400265"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CP/HA/HGF Conductive Composite Scaffolds with Synergistic Electrical Stimulation for Nerve Regeneration.\",\"authors\":\"Yahao Ma, Cong Wang, Jun Li, Pengfei Xie, Longyou Xiao, Seeram Ramakrishna, Nuan Chen, Xiaoying Wang, Liumin He\",\"doi\":\"10.1002/mabi.202400265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400265\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400265\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经再生的挑战源于损伤后成熟神经元活力的减弱。在损伤部位构建适宜的微环境促进轴突再生是神经损伤修复的一个重要方面。本研究将聚吡咯接枝于壳聚糖上,与透明质酸和功能性短肽复配,设计了一种导电的生物相容性复合材料CP/HA/HGF。综合材料表征表明,CP/HA/HGF具有良好的综合性能,具有作为支架材料的潜力。体外实验显示,导电复合支架与电刺激结合可促进背根神经节轴突生长和髓鞘形成,同时促进雪旺细胞的迁移。因此,本文所研究的导电复合支架为增强神经再生提供了一种很有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CP/HA/HGF Conductive Composite Scaffolds with Synergistic Electrical Stimulation for Nerve Regeneration.

The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration. Comprehensive material characterizations shows that CP/HA/HGF holds the potential as a scaffold material based on its good overall performance. In vitro experiments revealed that the combination of conductive composite scaffolds and electrical stimulation facilitated axonal growth and myelin formation in the dorsal root ganglion, while also promoting the migration of Schwann cells. Therefore, the conductive composite scaffold studied in this paper presents a promising strategy for enhancing neural regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信