Sadiyah Hanif, Mia Sclar, Jinah Lee, Caleb Nichols, Ekaterina Likhtik, Nesha S Burghardt
{"title":"青春期社会隔离对成年雌雄小鼠空间学习的影响存在差异。","authors":"Sadiyah Hanif, Mia Sclar, Jinah Lee, Caleb Nichols, Ekaterina Likhtik, Nesha S Burghardt","doi":"10.1101/lm.054059.124","DOIUrl":null,"url":null,"abstract":"<p><p>Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery. We socially isolated male and female 129Sv/Ev mice throughout adolescence (postnatal days 29-56), provided a 2-week resocialization recovery period, and then tested spatial learning and cognitive flexibility in the active place avoidance task. After behavioral testing, mice were injected with 5'-bromo-2'-deoxyuridine (BrdU) so that lasting effects of social isolation on cell proliferation in the dentate gyrus could be examined. Tissue was also stained for doublecortin (DCX). We found that in males, isolation led to a modest impairment in the rate of initial spatial learning, whereas in females, initial learning was unaffected. However, when the location of the shock zone was switched during the conflict variant of the task, cognitive flexibility was impaired in females only. Similarly, social isolation reduced cell proliferation and the number of immature neurons in the ventral dentate gyrus only in females. Together, these findings indicate that social isolation during adolescence differentially impairs spatial processing in males and females, with effects that persist into adulthood.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social isolation during adolescence differentially affects spatial learning in adult male and female mice.\",\"authors\":\"Sadiyah Hanif, Mia Sclar, Jinah Lee, Caleb Nichols, Ekaterina Likhtik, Nesha S Burghardt\",\"doi\":\"10.1101/lm.054059.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery. We socially isolated male and female 129Sv/Ev mice throughout adolescence (postnatal days 29-56), provided a 2-week resocialization recovery period, and then tested spatial learning and cognitive flexibility in the active place avoidance task. After behavioral testing, mice were injected with 5'-bromo-2'-deoxyuridine (BrdU) so that lasting effects of social isolation on cell proliferation in the dentate gyrus could be examined. Tissue was also stained for doublecortin (DCX). We found that in males, isolation led to a modest impairment in the rate of initial spatial learning, whereas in females, initial learning was unaffected. However, when the location of the shock zone was switched during the conflict variant of the task, cognitive flexibility was impaired in females only. Similarly, social isolation reduced cell proliferation and the number of immature neurons in the ventral dentate gyrus only in females. Together, these findings indicate that social isolation during adolescence differentially impairs spatial processing in males and females, with effects that persist into adulthood.</p>\",\"PeriodicalId\":18003,\"journal\":{\"name\":\"Learning & memory\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning & memory\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/lm.054059.124\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.054059.124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Social isolation during adolescence differentially affects spatial learning in adult male and female mice.
Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery. We socially isolated male and female 129Sv/Ev mice throughout adolescence (postnatal days 29-56), provided a 2-week resocialization recovery period, and then tested spatial learning and cognitive flexibility in the active place avoidance task. After behavioral testing, mice were injected with 5'-bromo-2'-deoxyuridine (BrdU) so that lasting effects of social isolation on cell proliferation in the dentate gyrus could be examined. Tissue was also stained for doublecortin (DCX). We found that in males, isolation led to a modest impairment in the rate of initial spatial learning, whereas in females, initial learning was unaffected. However, when the location of the shock zone was switched during the conflict variant of the task, cognitive flexibility was impaired in females only. Similarly, social isolation reduced cell proliferation and the number of immature neurons in the ventral dentate gyrus only in females. Together, these findings indicate that social isolation during adolescence differentially impairs spatial processing in males and females, with effects that persist into adulthood.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.