Xiaohan Liu, Yifan Tang, Hongyi Chen, Jian-Xin Liu, Hui-Zeng Sun
{"title":"奶牛瘤胃DNA病毒组及其与饲料效率的关系","authors":"Xiaohan Liu, Yifan Tang, Hongyi Chen, Jian-Xin Liu, Hui-Zeng Sun","doi":"10.1186/s40168-024-02019-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.</p><p><strong>Results: </strong>Integrated NGS and HiFi sequencing enhanced the length, completeness, and resolution of viral operational taxonomic units (vOTUs) compared to NGS. A total of 6,922 vOTUs were identified, including 4,716 lytic and 1,961 temperate vOTUs. At the family level, lytic viruses were predominantly from Siphoviridae (30.35%) and Schitoviridae (23.93%), while temperate viruses were primarily Siphoviridae (67.21%). The study annotated 2,382 auxiliary metabolic genes (AMGs), comprising 1,752 lytic virus-associated AMGs across 51 functional categories and 589 temperate virus-associated AMGs across 29 categories. Additionally, 2,232 vOTU-host metagenome-assembled genome (hMAG) linkages were predicted, with Firmicutes_A (33.60%) and Bacteroidota (33.24%) being the most prevalent host phyla. Significant differences in viral populations were observed between high and low FE groups across multiple taxonomic levels (P < 0.05). Two pathways were proposed to explain how rumen viruses might modulate FE: (1) Lytic viruses could lyse beneficial host bacteria linked to favorable cattle phenotypes, such as vOTU1836 targeting Ruminococcaceae, resulting in diminished organic acid production and consequently lower FE; (2) AMG-mediated host metabolism modulation, exemplified by GT2 carried by vOTU0897, which may enhance Lachnospiraceae fermentation capacity, increasing organic acid production and thereby improving FE.</p><p><strong>Conclusions: </strong>This study constructed a comprehensive rumen DNA virome profile for Holstein dairy cows, elucidating the structural and functional complexity of rumen viruses, the roles of AMGs, and vOTU-hMAG linkages. The integration of these data offers novel insights into the mechanisms by which rumen viruses may regulate nutrient utilization, potentially influencing FE in dairy cows. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"14"},"PeriodicalIF":13.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740651/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rumen DNA virome and its relationship with feed efficiency in dairy cows.\",\"authors\":\"Xiaohan Liu, Yifan Tang, Hongyi Chen, Jian-Xin Liu, Hui-Zeng Sun\",\"doi\":\"10.1186/s40168-024-02019-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.</p><p><strong>Results: </strong>Integrated NGS and HiFi sequencing enhanced the length, completeness, and resolution of viral operational taxonomic units (vOTUs) compared to NGS. A total of 6,922 vOTUs were identified, including 4,716 lytic and 1,961 temperate vOTUs. At the family level, lytic viruses were predominantly from Siphoviridae (30.35%) and Schitoviridae (23.93%), while temperate viruses were primarily Siphoviridae (67.21%). The study annotated 2,382 auxiliary metabolic genes (AMGs), comprising 1,752 lytic virus-associated AMGs across 51 functional categories and 589 temperate virus-associated AMGs across 29 categories. Additionally, 2,232 vOTU-host metagenome-assembled genome (hMAG) linkages were predicted, with Firmicutes_A (33.60%) and Bacteroidota (33.24%) being the most prevalent host phyla. Significant differences in viral populations were observed between high and low FE groups across multiple taxonomic levels (P < 0.05). Two pathways were proposed to explain how rumen viruses might modulate FE: (1) Lytic viruses could lyse beneficial host bacteria linked to favorable cattle phenotypes, such as vOTU1836 targeting Ruminococcaceae, resulting in diminished organic acid production and consequently lower FE; (2) AMG-mediated host metabolism modulation, exemplified by GT2 carried by vOTU0897, which may enhance Lachnospiraceae fermentation capacity, increasing organic acid production and thereby improving FE.</p><p><strong>Conclusions: </strong>This study constructed a comprehensive rumen DNA virome profile for Holstein dairy cows, elucidating the structural and functional complexity of rumen viruses, the roles of AMGs, and vOTU-hMAG linkages. The integration of these data offers novel insights into the mechanisms by which rumen viruses may regulate nutrient utilization, potentially influencing FE in dairy cows. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"14\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740651/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-02019-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-02019-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Rumen DNA virome and its relationship with feed efficiency in dairy cows.
Background: The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.
Results: Integrated NGS and HiFi sequencing enhanced the length, completeness, and resolution of viral operational taxonomic units (vOTUs) compared to NGS. A total of 6,922 vOTUs were identified, including 4,716 lytic and 1,961 temperate vOTUs. At the family level, lytic viruses were predominantly from Siphoviridae (30.35%) and Schitoviridae (23.93%), while temperate viruses were primarily Siphoviridae (67.21%). The study annotated 2,382 auxiliary metabolic genes (AMGs), comprising 1,752 lytic virus-associated AMGs across 51 functional categories and 589 temperate virus-associated AMGs across 29 categories. Additionally, 2,232 vOTU-host metagenome-assembled genome (hMAG) linkages were predicted, with Firmicutes_A (33.60%) and Bacteroidota (33.24%) being the most prevalent host phyla. Significant differences in viral populations were observed between high and low FE groups across multiple taxonomic levels (P < 0.05). Two pathways were proposed to explain how rumen viruses might modulate FE: (1) Lytic viruses could lyse beneficial host bacteria linked to favorable cattle phenotypes, such as vOTU1836 targeting Ruminococcaceae, resulting in diminished organic acid production and consequently lower FE; (2) AMG-mediated host metabolism modulation, exemplified by GT2 carried by vOTU0897, which may enhance Lachnospiraceae fermentation capacity, increasing organic acid production and thereby improving FE.
Conclusions: This study constructed a comprehensive rumen DNA virome profile for Holstein dairy cows, elucidating the structural and functional complexity of rumen viruses, the roles of AMGs, and vOTU-hMAG linkages. The integration of these data offers novel insights into the mechanisms by which rumen viruses may regulate nutrient utilization, potentially influencing FE in dairy cows. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.