William Poole, Thomas E Ouldridge, Manoj Gopalkrishnan
{"title":"化学反应网络集成生成模型的自主学习。","authors":"William Poole, Thomas E Ouldridge, Manoj Gopalkrishnan","doi":"10.1098/rsif.2024.0373","DOIUrl":null,"url":null,"abstract":"<p><p>Can a micron-sized sack of interacting molecules autonomously learn an internal model of a complex and fluctuating environment? We draw insights from control theory, machine learning theory, chemical reaction network theory and statistical physics to develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions. Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function, which we demonstrate can be viewed as a form of integral feedback control. We show how this method can be applied to optimize any detailed balanced chemical reaction network and that the construction is capable of using hidden units to learn complex distributions.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240373"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autonomous learning of generative models with chemical reaction network ensembles.\",\"authors\":\"William Poole, Thomas E Ouldridge, Manoj Gopalkrishnan\",\"doi\":\"10.1098/rsif.2024.0373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Can a micron-sized sack of interacting molecules autonomously learn an internal model of a complex and fluctuating environment? We draw insights from control theory, machine learning theory, chemical reaction network theory and statistical physics to develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions. Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function, which we demonstrate can be viewed as a form of integral feedback control. We show how this method can be applied to optimize any detailed balanced chemical reaction network and that the construction is capable of using hidden units to learn complex distributions.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 222\",\"pages\":\"20240373\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0373\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0373","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Autonomous learning of generative models with chemical reaction network ensembles.
Can a micron-sized sack of interacting molecules autonomously learn an internal model of a complex and fluctuating environment? We draw insights from control theory, machine learning theory, chemical reaction network theory and statistical physics to develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions. Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function, which we demonstrate can be viewed as a form of integral feedback control. We show how this method can be applied to optimize any detailed balanced chemical reaction network and that the construction is capable of using hidden units to learn complex distributions.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.