{"title":"量子点在样品制备中的应用综述。","authors":"Mahdie Rezaei, Ali Mehdinia","doi":"10.1002/jssc.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on the Applications of Quantum Dots in Sample Preparation\",\"authors\":\"Mahdie Rezaei, Ali Mehdinia\",\"doi\":\"10.1002/jssc.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.</p>\\n </div>\",\"PeriodicalId\":17098,\"journal\":{\"name\":\"Journal of separation science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of separation science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70061\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70061","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Review on the Applications of Quantum Dots in Sample Preparation
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.