Haoran Cui, Theodore Maranets, Tengfei Ma, Yan Wang
{"title":"界面透射时光谱热通量的再分布。","authors":"Haoran Cui, Theodore Maranets, Tengfei Ma, Yan Wang","doi":"10.1088/1361-648X/ada660","DOIUrl":null,"url":null,"abstract":"<p><p>In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates. Remarkably, while the heat flux spectra of dissimilar solids are typically distinct in their bulk forms, they can become nearly identical in superlattices or sandwich structures where the layer thicknesses are smaller than the phonon mean free paths. This phenomenon reflects that the redistribution of heat among phonon frequencies to the bulk distribution does not occur instantaneously at the interface, rather it develops over a distance on the order of phonon mean-free-paths.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral heat flux redistribution upon interfacial transmission.\",\"authors\":\"Haoran Cui, Theodore Maranets, Tengfei Ma, Yan Wang\",\"doi\":\"10.1088/1361-648X/ada660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates. Remarkably, while the heat flux spectra of dissimilar solids are typically distinct in their bulk forms, they can become nearly identical in superlattices or sandwich structures where the layer thicknesses are smaller than the phonon mean free paths. This phenomenon reflects that the redistribution of heat among phonon frequencies to the bulk distribution does not occur instantaneously at the interface, rather it develops over a distance on the order of phonon mean-free-paths.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\"37 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ada660\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ada660","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Spectral heat flux redistribution upon interfacial transmission.
In nonmetallic crystals, heat is transported by phonons of different frequencies, each contributing differently to the overall heat flux spectrum. In this study, we demonstrate a significant redistribution of heat flux among phonon frequencies when phonons transmit across the interface between dissimilar solids. This redistribution arises from the natural tendency of phononic heat to re-establish the bulk distribution characteristic of the material through which it propagates. Remarkably, while the heat flux spectra of dissimilar solids are typically distinct in their bulk forms, they can become nearly identical in superlattices or sandwich structures where the layer thicknesses are smaller than the phonon mean free paths. This phenomenon reflects that the redistribution of heat among phonon frequencies to the bulk distribution does not occur instantaneously at the interface, rather it develops over a distance on the order of phonon mean-free-paths.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.