{"title":"原子有序ink0.5 na0.5 nbo3及其对铁电性能影响的再研究。","authors":"Anuvrat Tripathi, Saurabh Tripathi","doi":"10.1088/1361-648X/ada65d","DOIUrl":null,"url":null,"abstract":"<p><p>In the present work, we reinvestigate the atomic ordering of a Pb-free morphotropic phase boundary (MPB) compositionviz.,K0.5Na0.5NbO3(KNN50) and its vicinity at various length scales using high-resolution x-ray diffraction and pair distribution function data. We have observed a monoclinic phase (Space Group: Pm) at long/short ranges differing from a very recent report by Saha<i>et al</i>2024<i>J. Phys.: Condens. Matter</i><b>36</b>425703. Moreover, the ferroelectric (polarization) dominance of short-range ordering (SRO) over long-range ordering (LRO) has been observed and quantified for the very first time using the amplitude of the ferroelectric frozen phonon mode (Γ4-) (corresponding to the high symmetry cubic phase), thereby structure is linked with ferroelectric (or polarization) property for a widely studied MPB systemviz.,KxNa(1-x)NbO3(KNN<i>x</i>for<i>x</i>= 0.40, 0.50, and 0.60). Two uniquely identified monoclinic phases has been observed for SRO (MSRO) and LRO (MLRO) for all the compositions. The amplitude of ferroelectric frozen phonon mode (Γ4-) corresponding toMSROis significantly higher (≈150%-180%) thanMLRO. A peak is observed in the amplitude ofΓ4-and intensity of prominent Raman peaks (<i>ν</i><sub>1</sub>and<i>ν</i><sub>5</sub>) for<i>x</i>= 0.50, which is held responsible for high physical propertiesviz.,dielectric permittivity, piezoelectric coefficient, remnant polarization, electromechanical coupling coefficient, and many more widely reported in literature for KNN50.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinvestigating atomic ordering inK0.5Na0.5NbO3and its impact on ferroelectric properties.\",\"authors\":\"Anuvrat Tripathi, Saurabh Tripathi\",\"doi\":\"10.1088/1361-648X/ada65d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present work, we reinvestigate the atomic ordering of a Pb-free morphotropic phase boundary (MPB) compositionviz.,K0.5Na0.5NbO3(KNN50) and its vicinity at various length scales using high-resolution x-ray diffraction and pair distribution function data. We have observed a monoclinic phase (Space Group: Pm) at long/short ranges differing from a very recent report by Saha<i>et al</i>2024<i>J. Phys.: Condens. Matter</i><b>36</b>425703. Moreover, the ferroelectric (polarization) dominance of short-range ordering (SRO) over long-range ordering (LRO) has been observed and quantified for the very first time using the amplitude of the ferroelectric frozen phonon mode (Γ4-) (corresponding to the high symmetry cubic phase), thereby structure is linked with ferroelectric (or polarization) property for a widely studied MPB systemviz.,KxNa(1-x)NbO3(KNN<i>x</i>for<i>x</i>= 0.40, 0.50, and 0.60). Two uniquely identified monoclinic phases has been observed for SRO (MSRO) and LRO (MLRO) for all the compositions. The amplitude of ferroelectric frozen phonon mode (Γ4-) corresponding toMSROis significantly higher (≈150%-180%) thanMLRO. A peak is observed in the amplitude ofΓ4-and intensity of prominent Raman peaks (<i>ν</i><sub>1</sub>and<i>ν</i><sub>5</sub>) for<i>x</i>= 0.50, which is held responsible for high physical propertiesviz.,dielectric permittivity, piezoelectric coefficient, remnant polarization, electromechanical coupling coefficient, and many more widely reported in literature for KNN50.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\"37 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ada65d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ada65d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Reinvestigating atomic ordering inK0.5Na0.5NbO3and its impact on ferroelectric properties.
In the present work, we reinvestigate the atomic ordering of a Pb-free morphotropic phase boundary (MPB) compositionviz.,K0.5Na0.5NbO3(KNN50) and its vicinity at various length scales using high-resolution x-ray diffraction and pair distribution function data. We have observed a monoclinic phase (Space Group: Pm) at long/short ranges differing from a very recent report by Sahaet al2024J. Phys.: Condens. Matter36425703. Moreover, the ferroelectric (polarization) dominance of short-range ordering (SRO) over long-range ordering (LRO) has been observed and quantified for the very first time using the amplitude of the ferroelectric frozen phonon mode (Γ4-) (corresponding to the high symmetry cubic phase), thereby structure is linked with ferroelectric (or polarization) property for a widely studied MPB systemviz.,KxNa(1-x)NbO3(KNNxforx= 0.40, 0.50, and 0.60). Two uniquely identified monoclinic phases has been observed for SRO (MSRO) and LRO (MLRO) for all the compositions. The amplitude of ferroelectric frozen phonon mode (Γ4-) corresponding toMSROis significantly higher (≈150%-180%) thanMLRO. A peak is observed in the amplitude ofΓ4-and intensity of prominent Raman peaks (ν1andν5) forx= 0.50, which is held responsible for high physical propertiesviz.,dielectric permittivity, piezoelectric coefficient, remnant polarization, electromechanical coupling coefficient, and many more widely reported in literature for KNN50.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.