Hu Li, Kangqiang Weng, Hao Qi, Huiyue Qi, Linlu She, Junliang Qiu, Yingbo Dai
{"title":"甲基巴豆酰辅酶a羧化酶2支持亮氨酸分解代谢,促进线粒体生物发生,减轻顺铂诱导的急性肾损伤。","authors":"Hu Li, Kangqiang Weng, Hao Qi, Huiyue Qi, Linlu She, Junliang Qiu, Yingbo Dai","doi":"10.23876/j.krcp.24.169","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.</p><p><strong>Methods: </strong>In vitro, the expression of MCCC2 was manipulated by transfecting HK-2 cells with lentiviruses, and changes in the acetoacetate content, cell viability, apoptosis, oxidative stress, mitochondrial function, and mitochondrial biogenesis were evaluated. In vivo, MCCC2 overexpression was manipulated by adeno-associated viruses, and serum and kidneys were collected for subsequent experiments to detect changes in renal function, tissue damage, apoptosis, oxidative stress, mitochondrial damage, and mitochondrial biogenesis.</p><p><strong>Results: </strong>We found that MCCC2 was downregulated in cisplatin-induced AKI models. In vitro, leucine catabolism was inhibited by cisplatin, while overexpression of MCCC2 supported leucine catabolism, upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression, promoted mitochondrial biogenesis, improved mitochondrial function, and alleviated cisplatin-induced apoptosis and oxidative stress in HK-2 cells. In contrast, the knockdown of MCCC2 exacerbated these effects, while leucine deprivation reversed the effects of MCCC2 overexpression on mitochondrial function and biogenesis. In vivo, the overexpression of MCCC2 promoted mitochondrial biogenesis, maintained the integrity of the mitochondrial structure and function, and alleviated cisplatin-induced AKI.</p><p><strong>Conclusion: </strong>MCCC2 supported leucine catabolism and promoted mitochondrial biogenesis, providing a new therapeutic strategy for cisplatin-induced AKI.</p>","PeriodicalId":17716,"journal":{"name":"Kidney Research and Clinical Practice","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methylcrotonyl-CoA carboxylase 2 supports leucine catabolism to promote mitochondrial biogenesis and alleviate cisplatin-induced acute kidney injury.\",\"authors\":\"Hu Li, Kangqiang Weng, Hao Qi, Huiyue Qi, Linlu She, Junliang Qiu, Yingbo Dai\",\"doi\":\"10.23876/j.krcp.24.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.</p><p><strong>Methods: </strong>In vitro, the expression of MCCC2 was manipulated by transfecting HK-2 cells with lentiviruses, and changes in the acetoacetate content, cell viability, apoptosis, oxidative stress, mitochondrial function, and mitochondrial biogenesis were evaluated. In vivo, MCCC2 overexpression was manipulated by adeno-associated viruses, and serum and kidneys were collected for subsequent experiments to detect changes in renal function, tissue damage, apoptosis, oxidative stress, mitochondrial damage, and mitochondrial biogenesis.</p><p><strong>Results: </strong>We found that MCCC2 was downregulated in cisplatin-induced AKI models. In vitro, leucine catabolism was inhibited by cisplatin, while overexpression of MCCC2 supported leucine catabolism, upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression, promoted mitochondrial biogenesis, improved mitochondrial function, and alleviated cisplatin-induced apoptosis and oxidative stress in HK-2 cells. In contrast, the knockdown of MCCC2 exacerbated these effects, while leucine deprivation reversed the effects of MCCC2 overexpression on mitochondrial function and biogenesis. In vivo, the overexpression of MCCC2 promoted mitochondrial biogenesis, maintained the integrity of the mitochondrial structure and function, and alleviated cisplatin-induced AKI.</p><p><strong>Conclusion: </strong>MCCC2 supported leucine catabolism and promoted mitochondrial biogenesis, providing a new therapeutic strategy for cisplatin-induced AKI.</p>\",\"PeriodicalId\":17716,\"journal\":{\"name\":\"Kidney Research and Clinical Practice\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney Research and Clinical Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23876/j.krcp.24.169\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Research and Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23876/j.krcp.24.169","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Methylcrotonyl-CoA carboxylase 2 supports leucine catabolism to promote mitochondrial biogenesis and alleviate cisplatin-induced acute kidney injury.
Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.
Methods: In vitro, the expression of MCCC2 was manipulated by transfecting HK-2 cells with lentiviruses, and changes in the acetoacetate content, cell viability, apoptosis, oxidative stress, mitochondrial function, and mitochondrial biogenesis were evaluated. In vivo, MCCC2 overexpression was manipulated by adeno-associated viruses, and serum and kidneys were collected for subsequent experiments to detect changes in renal function, tissue damage, apoptosis, oxidative stress, mitochondrial damage, and mitochondrial biogenesis.
Results: We found that MCCC2 was downregulated in cisplatin-induced AKI models. In vitro, leucine catabolism was inhibited by cisplatin, while overexpression of MCCC2 supported leucine catabolism, upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression, promoted mitochondrial biogenesis, improved mitochondrial function, and alleviated cisplatin-induced apoptosis and oxidative stress in HK-2 cells. In contrast, the knockdown of MCCC2 exacerbated these effects, while leucine deprivation reversed the effects of MCCC2 overexpression on mitochondrial function and biogenesis. In vivo, the overexpression of MCCC2 promoted mitochondrial biogenesis, maintained the integrity of the mitochondrial structure and function, and alleviated cisplatin-induced AKI.
Conclusion: MCCC2 supported leucine catabolism and promoted mitochondrial biogenesis, providing a new therapeutic strategy for cisplatin-induced AKI.
期刊介绍:
Kidney Research and Clinical Practice (formerly The Korean Journal of Nephrology; ISSN 1975-9460, launched in 1982), the official journal of the Korean Society of Nephrology, is an international, peer-reviewed journal published in English. Its ISO abbreviation is Kidney Res Clin Pract. To provide an efficient venue for dissemination of knowledge and discussion of topics related to basic renal science and clinical practice, the journal offers open access (free submission and free access) and considers articles on all aspects of clinical nephrology and hypertension as well as related molecular genetics, anatomy, pathology, physiology, pharmacology, and immunology. In particular, the journal focuses on translational renal research that helps bridging laboratory discovery with the diagnosis and treatment of human kidney disease. Topics covered include basic science with possible clinical applicability and papers on the pathophysiological basis of disease processes of the kidney. Original researches from areas of intervention nephrology or dialysis access are also welcomed. Major article types considered for publication include original research and reviews on current topics of interest. Accepted manuscripts are granted free online open-access immediately after publication, which permits its users to read, download, copy, distribute, print, search, or link to the full texts of its articles to facilitate access to a broad readership. Circulation number of print copies is 1,600.