Ji Hyang Gu, Min-Young Chae, Jeong June Choi, Thanh Chu Duc, Chang Gue Son, Eun-Jung Lee
{"title":"鹿茸(Cervus elaphus sibiricus)通过部分bmp - smad介导的成骨细胞分化促进骨折愈合。","authors":"Ji Hyang Gu, Min-Young Chae, Jeong June Choi, Thanh Chu Duc, Chang Gue Son, Eun-Jung Lee","doi":"10.1186/s13018-024-05426-z","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.</p><p><strong>Methods: </strong>Fifty-four C57BL/6 male mice underwent femoral shaft fracture by Bonnarens and Einhorn's method, subsequently receiving a water extract of CES (200 mg/kg/day, daily) for 7 and 14 days. Safranin O staining and immunohistochemistry of the fracture region were conducted against transforming growth factor-β (TGF-β), bone morphogenetic protein 2 (BMP2), and osterix. MG63 cells used to examine the underlying mechanisms of CES focused on BMP2-Smad pathway-related osteogenesis.</p><p><strong>Results: </strong>CES administration led to earlier union of the fractured bones, supported by Safranin O staining of the fracture region, demonstrating significantly increased cartilage formation day on 7 and a rapidly decreased cartilage area due to callus formation day on 14. CES administration also significantly upregulated the expression of TGF-β1 day 7, BMP 2, and osterix day 14 at the fracture site and also up-regulated alkaline phosphatase (ALP) activity, calcium deposition, and the phosphorylation of Smad in MG63 cells.</p><p><strong>Conclusions: </strong>CES promotes fracture healing by promoting osteoblastogenesis via a partial BMP2-Smad pathway.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"70"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deer antler velvet (Cervus elaphus sibiricus) promotes fracture healing via partial BMP2-Smad mediated osteoblast differentiation.\",\"authors\":\"Ji Hyang Gu, Min-Young Chae, Jeong June Choi, Thanh Chu Duc, Chang Gue Son, Eun-Jung Lee\",\"doi\":\"10.1186/s13018-024-05426-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.</p><p><strong>Methods: </strong>Fifty-four C57BL/6 male mice underwent femoral shaft fracture by Bonnarens and Einhorn's method, subsequently receiving a water extract of CES (200 mg/kg/day, daily) for 7 and 14 days. Safranin O staining and immunohistochemistry of the fracture region were conducted against transforming growth factor-β (TGF-β), bone morphogenetic protein 2 (BMP2), and osterix. MG63 cells used to examine the underlying mechanisms of CES focused on BMP2-Smad pathway-related osteogenesis.</p><p><strong>Results: </strong>CES administration led to earlier union of the fractured bones, supported by Safranin O staining of the fracture region, demonstrating significantly increased cartilage formation day on 7 and a rapidly decreased cartilage area due to callus formation day on 14. CES administration also significantly upregulated the expression of TGF-β1 day 7, BMP 2, and osterix day 14 at the fracture site and also up-regulated alkaline phosphatase (ALP) activity, calcium deposition, and the phosphorylation of Smad in MG63 cells.</p><p><strong>Conclusions: </strong>CES promotes fracture healing by promoting osteoblastogenesis via a partial BMP2-Smad pathway.</p>\",\"PeriodicalId\":16629,\"journal\":{\"name\":\"Journal of Orthopaedic Surgery and Research\",\"volume\":\"20 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Surgery and Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13018-024-05426-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05426-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
BACKGROUND CERVUS ELAPHUS SIBIRICUS: (CES) has been traditionally used in Korean clinics to promote fracture healing based on its function of tonifying the kidneys and strengthening bones. However, experimental data supporting its efficacy are still insufficient. The aim of this study investigated the bone-union properties of CES in a femoral fracture animal model and its corresponding molecular mechanisms.
Methods: Fifty-four C57BL/6 male mice underwent femoral shaft fracture by Bonnarens and Einhorn's method, subsequently receiving a water extract of CES (200 mg/kg/day, daily) for 7 and 14 days. Safranin O staining and immunohistochemistry of the fracture region were conducted against transforming growth factor-β (TGF-β), bone morphogenetic protein 2 (BMP2), and osterix. MG63 cells used to examine the underlying mechanisms of CES focused on BMP2-Smad pathway-related osteogenesis.
Results: CES administration led to earlier union of the fractured bones, supported by Safranin O staining of the fracture region, demonstrating significantly increased cartilage formation day on 7 and a rapidly decreased cartilage area due to callus formation day on 14. CES administration also significantly upregulated the expression of TGF-β1 day 7, BMP 2, and osterix day 14 at the fracture site and also up-regulated alkaline phosphatase (ALP) activity, calcium deposition, and the phosphorylation of Smad in MG63 cells.
Conclusions: CES promotes fracture healing by promoting osteoblastogenesis via a partial BMP2-Smad pathway.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.