{"title":"Id位点的共同祖先:染色体重排和多基因可能性。","authors":"Ashutosh Sharma, Nagarjun Vijay","doi":"10.1007/s00239-025-10233-z","DOIUrl":null,"url":null,"abstract":"<p><p>The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus. Although prior studies using genetic crosses, GWAS, and gene expression analysis have investigated the genetic underpinnings of the Id locus, its precise location and functional details remain elusive. Our study aims to precisely locate the Id locus, identify associated chromosomal rearrangements and candidate genes influencing dermal pigmentation, and examine the ancestral status of the Id locus in BBC breeds. Using public genomic data from BBC and non-BBC breeds, we refined the Id locus to a ~1.6 Mb region that co-localizes with Z amplicon repeat units at the distal end of the q-arm of chromosome Z within a 10.36 Mb inversion in Silkie BBC. Phylogenetic and population structure analyses reveal that the Id locus shares a common ancestry across all BBC breeds, much like the Fm locus. Selection signatures and highly differentiated BBC-specific SNPs within the MTAP gene position it as the prime candidate for the Id locus with CCDC112 and additional genes, suggesting a possible polygenic nature. Our results suggest that the Id locus is shared among BBC breeds and may function as a supergene cluster in shank and dermal pigmentation variation.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.\",\"authors\":\"Ashutosh Sharma, Nagarjun Vijay\",\"doi\":\"10.1007/s00239-025-10233-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus. Although prior studies using genetic crosses, GWAS, and gene expression analysis have investigated the genetic underpinnings of the Id locus, its precise location and functional details remain elusive. Our study aims to precisely locate the Id locus, identify associated chromosomal rearrangements and candidate genes influencing dermal pigmentation, and examine the ancestral status of the Id locus in BBC breeds. Using public genomic data from BBC and non-BBC breeds, we refined the Id locus to a ~1.6 Mb region that co-localizes with Z amplicon repeat units at the distal end of the q-arm of chromosome Z within a 10.36 Mb inversion in Silkie BBC. Phylogenetic and population structure analyses reveal that the Id locus shares a common ancestry across all BBC breeds, much like the Fm locus. Selection signatures and highly differentiated BBC-specific SNPs within the MTAP gene position it as the prime candidate for the Id locus with CCDC112 and additional genes, suggesting a possible polygenic nature. Our results suggest that the Id locus is shared among BBC breeds and may function as a supergene cluster in shank and dermal pigmentation variation.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-025-10233-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10233-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities.
The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus. Although prior studies using genetic crosses, GWAS, and gene expression analysis have investigated the genetic underpinnings of the Id locus, its precise location and functional details remain elusive. Our study aims to precisely locate the Id locus, identify associated chromosomal rearrangements and candidate genes influencing dermal pigmentation, and examine the ancestral status of the Id locus in BBC breeds. Using public genomic data from BBC and non-BBC breeds, we refined the Id locus to a ~1.6 Mb region that co-localizes with Z amplicon repeat units at the distal end of the q-arm of chromosome Z within a 10.36 Mb inversion in Silkie BBC. Phylogenetic and population structure analyses reveal that the Id locus shares a common ancestry across all BBC breeds, much like the Fm locus. Selection signatures and highly differentiated BBC-specific SNPs within the MTAP gene position it as the prime candidate for the Id locus with CCDC112 and additional genes, suggesting a possible polygenic nature. Our results suggest that the Id locus is shared among BBC breeds and may function as a supergene cluster in shank and dermal pigmentation variation.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.