T S Blanchard, M L Earhart, N Strowbridge, P M Schulte
{"title":"在发育早期暴露于较低的温度会降低异交底藻幼体的缺氧耐受性。","authors":"T S Blanchard, M L Earhart, N Strowbridge, P M Schulte","doi":"10.1242/jeb.249308","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored. In this study, we examined whether altered temperature during embryonic development results in developmental plasticity in upper thermal tolerance or hypoxia tolerance using a small topminnow, Fundulus heteroclitus, and examined potential underlying molecular mechanisms. We incubated embryos at one of two ecologically relevant temperatures (20 °C or 26 °C) until hatch. Once hatched, fish were raised at a common temperature of 20 °C for one year, and tolerance was assessed in both juveniles (6 months) and early adults (1 year). Developmental temperature had no significant effect on thermal tolerance (CTmax) in juvenile fish, or on the transcript abundance of thermal-tolerance related genes (constitutive heat shock proteins, hsc70, hsp90b). In contrast, reduced developmental temperature decreased hypoxia tolerance but increased transcript levels of the hypoxia inducible factor hif1α in juvenile fish but the effects were less evident in older fish. Overall, we found no indication of developmental plasticity for thermal tolerance, but there was evidence of negative impacts of lower developmental temperature on hypoxia tolerance in juveniles associated with changes in gene expression, providing evidence of developmental plasticity across stressors and levels of organization.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to lower temperature during early development decreases hypoxia tolerance in juvenile Fundulus heteroclitus.\",\"authors\":\"T S Blanchard, M L Earhart, N Strowbridge, P M Schulte\",\"doi\":\"10.1242/jeb.249308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored. In this study, we examined whether altered temperature during embryonic development results in developmental plasticity in upper thermal tolerance or hypoxia tolerance using a small topminnow, Fundulus heteroclitus, and examined potential underlying molecular mechanisms. We incubated embryos at one of two ecologically relevant temperatures (20 °C or 26 °C) until hatch. Once hatched, fish were raised at a common temperature of 20 °C for one year, and tolerance was assessed in both juveniles (6 months) and early adults (1 year). Developmental temperature had no significant effect on thermal tolerance (CTmax) in juvenile fish, or on the transcript abundance of thermal-tolerance related genes (constitutive heat shock proteins, hsc70, hsp90b). In contrast, reduced developmental temperature decreased hypoxia tolerance but increased transcript levels of the hypoxia inducible factor hif1α in juvenile fish but the effects were less evident in older fish. Overall, we found no indication of developmental plasticity for thermal tolerance, but there was evidence of negative impacts of lower developmental temperature on hypoxia tolerance in juveniles associated with changes in gene expression, providing evidence of developmental plasticity across stressors and levels of organization.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249308\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249308","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exposure to lower temperature during early development decreases hypoxia tolerance in juvenile Fundulus heteroclitus.
Cross-protection occurs when exposure to one stressor confers heightened tolerance against a different stressor. Alternatively, exposure to one stressor could result in reduced tolerance against other stressors. Although cross-protection has been documented in a wide range of taxa at juvenile and adult life stages, whether early developmental exposure to a stressor confers cross-protection or reduced tolerance to other stressors later in life through developmental plasticity remains largely unexplored. In this study, we examined whether altered temperature during embryonic development results in developmental plasticity in upper thermal tolerance or hypoxia tolerance using a small topminnow, Fundulus heteroclitus, and examined potential underlying molecular mechanisms. We incubated embryos at one of two ecologically relevant temperatures (20 °C or 26 °C) until hatch. Once hatched, fish were raised at a common temperature of 20 °C for one year, and tolerance was assessed in both juveniles (6 months) and early adults (1 year). Developmental temperature had no significant effect on thermal tolerance (CTmax) in juvenile fish, or on the transcript abundance of thermal-tolerance related genes (constitutive heat shock proteins, hsc70, hsp90b). In contrast, reduced developmental temperature decreased hypoxia tolerance but increased transcript levels of the hypoxia inducible factor hif1α in juvenile fish but the effects were less evident in older fish. Overall, we found no indication of developmental plasticity for thermal tolerance, but there was evidence of negative impacts of lower developmental temperature on hypoxia tolerance in juveniles associated with changes in gene expression, providing evidence of developmental plasticity across stressors and levels of organization.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.