靛玉红-3′-肟作为双作用剂:缓解黑颊果蝇热致雄性不育和抑制可溶性环氧化物水解酶。

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nguyen Viet Phong, Hyo-Sung Kim, Yan Zhao, Eunbyul Yeom, Seo Young Yang
{"title":"靛玉红-3′-肟作为双作用剂:缓解黑颊果蝇热致雄性不育和抑制可溶性环氧化物水解酶。","authors":"Nguyen Viet Phong, Hyo-Sung Kim, Yan Zhao, Eunbyul Yeom, Seo Young Yang","doi":"10.1080/14756366.2024.2447719","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in <i>Drosophila melanogaster</i>. Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health. I3O exhibited sEH inhibitions with an IC<sub>50</sub> value of 59.74 ± 0.41 µM. Enzyme kinetics revealed that I3O acts as a non-competitive inhibitor of sEH with a <i>K<sub>i</sub></i> value of 78.88 µM. Molecular docking showed strong interactions between I3O and key residues in the allosteric regions within the sEH enzyme, with a binding affinity of -9.2 kcal/mol. These interactions were supported by 100 ns molecular dynamics simulations, which confirmed the stability of the sEH-I3O complex.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2447719"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Indirubin-3'-oxime as a dual-action agent: mitigating heat-induced male infertility in <i>Drosophila melanogaster</i> and inhibiting soluble epoxide hydrolase.\",\"authors\":\"Nguyen Viet Phong, Hyo-Sung Kim, Yan Zhao, Eunbyul Yeom, Seo Young Yang\",\"doi\":\"10.1080/14756366.2024.2447719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in <i>Drosophila melanogaster</i>. Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health. I3O exhibited sEH inhibitions with an IC<sub>50</sub> value of 59.74 ± 0.41 µM. Enzyme kinetics revealed that I3O acts as a non-competitive inhibitor of sEH with a <i>K<sub>i</sub></i> value of 78.88 µM. Molecular docking showed strong interactions between I3O and key residues in the allosteric regions within the sEH enzyme, with a binding affinity of -9.2 kcal/mol. These interactions were supported by 100 ns molecular dynamics simulations, which confirmed the stability of the sEH-I3O complex.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":\"40 1\",\"pages\":\"2447719\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2447719\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2447719","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了靛红素-3′-肟(i30o)化合物缓解黑腹果蝇(Drosophila melanogaster)温度诱导雄性不育的潜力。升高的温度显著降低了鸡蛋的孵化率,但补充i30提高了这些率,这表明它可以部分恢复热应激下的生育能力。此外,i30被发现抑制可溶性环氧化物水解酶(sEH),这是一种参与环氧二碳三烯酸代谢的酶,对生殖健康至关重要。i30对sEH有抑制作用,IC50值为59.74±0.41µM。酶动力学表明,i30作为非竞争性sEH抑制剂,Ki值为78.88µM。分子对接表明,i30与sEH酶内变抗区关键残基之间存在较强的相互作用,结合亲和力为-9.2 kcal/mol。这些相互作用得到了100 ns分子动力学模拟的支持,证实了seh - i30配合物的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indirubin-3'-oxime as a dual-action agent: mitigating heat-induced male infertility in Drosophila melanogaster and inhibiting soluble epoxide hydrolase.

This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in Drosophila melanogaster. Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health. I3O exhibited sEH inhibitions with an IC50 value of 59.74 ± 0.41 µM. Enzyme kinetics revealed that I3O acts as a non-competitive inhibitor of sEH with a Ki value of 78.88 µM. Molecular docking showed strong interactions between I3O and key residues in the allosteric regions within the sEH enzyme, with a binding affinity of -9.2 kcal/mol. These interactions were supported by 100 ns molecular dynamics simulations, which confirmed the stability of the sEH-I3O complex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信