Matthew T. Freeman , Arianne Parvaresh-Rizi , Samantha A. Meenach
{"title":"增强巨噬细胞对喷雾干燥磷脂酰丝氨酸负载微粒的摄取,用于肺部药物递送应用。","authors":"Matthew T. Freeman , Arianne Parvaresh-Rizi , Samantha A. Meenach","doi":"10.1016/j.jddst.2024.106535","DOIUrl":null,"url":null,"abstract":"<div><div>Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses. This study aims to overcome this limitation via the development of an inhalable dry powder microparticle (MP) formulation capable of targeted drug delivery to alveolar macrophages in addition to controlled release of a therapeutic. A simple one-step spray drying method was used to synthesize acetalated dextran (Ac-Dex) MP loaded with the model therapeutic, curcumin, and 1,2-dipalmitoyl-sn-glycero-3-phospho-<em>L</em>-serine (DPPS), which is a phospholipid that induces ligand-receptor mediated macrophage phagocytosis. The resulting MP exhibited significantly more uptake by RAW 264.7 macrophages in comparison to MP without DPPS, and it was shown that DPPS-mediated uptake was macrophage specific. The particles exhibited pH-responsive release and <em>in vitro</em> aerosol dispersion analysis confirmed the MP can be effectively aerosolized for pulmonary delivery. Overall, the described MP has the potential to improve treatment efficacy for macrophage-associated diseases.</div></div>","PeriodicalId":15600,"journal":{"name":"Journal of Drug Delivery Science and Technology","volume":"104 ","pages":"Article 106535"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced macrophage uptake of spray-dried phosphatidylserine-loaded microparticles for pulmonary drug delivery applications\",\"authors\":\"Matthew T. Freeman , Arianne Parvaresh-Rizi , Samantha A. Meenach\",\"doi\":\"10.1016/j.jddst.2024.106535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses. This study aims to overcome this limitation via the development of an inhalable dry powder microparticle (MP) formulation capable of targeted drug delivery to alveolar macrophages in addition to controlled release of a therapeutic. A simple one-step spray drying method was used to synthesize acetalated dextran (Ac-Dex) MP loaded with the model therapeutic, curcumin, and 1,2-dipalmitoyl-sn-glycero-3-phospho-<em>L</em>-serine (DPPS), which is a phospholipid that induces ligand-receptor mediated macrophage phagocytosis. The resulting MP exhibited significantly more uptake by RAW 264.7 macrophages in comparison to MP without DPPS, and it was shown that DPPS-mediated uptake was macrophage specific. The particles exhibited pH-responsive release and <em>in vitro</em> aerosol dispersion analysis confirmed the MP can be effectively aerosolized for pulmonary delivery. Overall, the described MP has the potential to improve treatment efficacy for macrophage-associated diseases.</div></div>\",\"PeriodicalId\":15600,\"journal\":{\"name\":\"Journal of Drug Delivery Science and Technology\",\"volume\":\"104 \",\"pages\":\"Article 106535\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Delivery Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1773224724012048\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Delivery Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1773224724012048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Enhanced macrophage uptake of spray-dried phosphatidylserine-loaded microparticles for pulmonary drug delivery applications
Macrophages are an integral part of the innate immune system and act as a first line of defense to pathogens; however, macrophages can be reservoirs for pathogens to hide and replicate. Tuberculosis, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are common diseases whose pathogens are uptaken into macrophages. Current treatments for diseases such as these are limited by the therapeutic delivery method, which typically involves systemic delivery in large, frequent doses. This study aims to overcome this limitation via the development of an inhalable dry powder microparticle (MP) formulation capable of targeted drug delivery to alveolar macrophages in addition to controlled release of a therapeutic. A simple one-step spray drying method was used to synthesize acetalated dextran (Ac-Dex) MP loaded with the model therapeutic, curcumin, and 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), which is a phospholipid that induces ligand-receptor mediated macrophage phagocytosis. The resulting MP exhibited significantly more uptake by RAW 264.7 macrophages in comparison to MP without DPPS, and it was shown that DPPS-mediated uptake was macrophage specific. The particles exhibited pH-responsive release and in vitro aerosol dispersion analysis confirmed the MP can be effectively aerosolized for pulmonary delivery. Overall, the described MP has the potential to improve treatment efficacy for macrophage-associated diseases.
期刊介绍:
The Journal of Drug Delivery Science and Technology is an international journal devoted to drug delivery and pharmaceutical technology. The journal covers all innovative aspects of all pharmaceutical dosage forms and the most advanced research on controlled release, bioavailability and drug absorption, nanomedicines, gene delivery, tissue engineering, etc. Hot topics, related to manufacturing processes and quality control, are also welcomed.