优化干细胞扩增:基质刚度在增强DPSC静止和再生中的作用。

IF 3.5 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Maryam Ghaffari, Annie Shrestha
{"title":"优化干细胞扩增:基质刚度在增强DPSC静止和再生中的作用。","authors":"Maryam Ghaffari, Annie Shrestha","doi":"10.1016/j.joen.2025.01.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway.</p><p><strong>Methods: </strong>Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated. Mechanical properties and porosity were characterized. Human DPSCs were cultured for 7 and 14 days. Senescence was assessed by senescence β-galactosidase activity, nuclear changes by immunofluorescence staining, and gene expression of quiescence, self-renewal, and senescence markers by reverse transcription quantitative polymerase chain reaction. NF-κB activation was analyzed through p65 nuclear translocation. Statistical analysis employed one-way analysis of variance with post-Tukey tests (P < .05).</p><p><strong>Results: </strong>The porous (310 ± 63 μm) 3D substrate had 50 kPa stiffness. DPSCs on 50 kPa substrates exhibited increased nuclear size and senescence in both 2D and 3D contexts. Softer 2 kPa substrates promoted quiescence, evidenced by reduced chromatin condensation and senescence, alongside upregulation of quiescence associated genes (BMI-1) and pluripotency markers (NANOG, OCT4, SOX2). NF-κB activation was observed on soft substrates, marked by nuclear translocation of p65 and upregulated NF-κB pathway genes, correlating with enhanced stemness and reduced senescence.</p><p><strong>Conclusions: </strong>This study highlights the pivotal role of substrate stiffness in modulating stem cell fate. Softer substrates preserve DPSC quiescence, reduce senescence, and enhance stemness through NF-κB pathway activation, offering insights into optimizing ex vivo DPSC expansion for therapeutic applications.</p>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Stem Cell Expansion: The Role of Substrate Stiffness in Enhancing Dental Pulp Stem Cell Quiescence and Regeneration.\",\"authors\":\"Maryam Ghaffari, Annie Shrestha\",\"doi\":\"10.1016/j.joen.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway.</p><p><strong>Methods: </strong>Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated. Mechanical properties and porosity were characterized. Human DPSCs were cultured for 7 and 14 days. Senescence was assessed by senescence β-galactosidase activity, nuclear changes by immunofluorescence staining, and gene expression of quiescence, self-renewal, and senescence markers by reverse transcription quantitative polymerase chain reaction. NF-κB activation was analyzed through p65 nuclear translocation. Statistical analysis employed one-way analysis of variance with post-Tukey tests (P < .05).</p><p><strong>Results: </strong>The porous (310 ± 63 μm) 3D substrate had 50 kPa stiffness. DPSCs on 50 kPa substrates exhibited increased nuclear size and senescence in both 2D and 3D contexts. Softer 2 kPa substrates promoted quiescence, evidenced by reduced chromatin condensation and senescence, alongside upregulation of quiescence associated genes (BMI-1) and pluripotency markers (NANOG, OCT4, SOX2). NF-κB activation was observed on soft substrates, marked by nuclear translocation of p65 and upregulated NF-κB pathway genes, correlating with enhanced stemness and reduced senescence.</p><p><strong>Conclusions: </strong>This study highlights the pivotal role of substrate stiffness in modulating stem cell fate. Softer substrates preserve DPSC quiescence, reduce senescence, and enhance stemness through NF-κB pathway activation, offering insights into optimizing ex vivo DPSC expansion for therapeutic applications.</p>\",\"PeriodicalId\":15703,\"journal\":{\"name\":\"Journal of endodontics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of endodontics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joen.2025.01.004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.joen.2025.01.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Stem Cell Expansion: The Role of Substrate Stiffness in Enhancing Dental Pulp Stem Cell Quiescence and Regeneration.

Introduction: Quiescent stem cells exhibit unique self-renewal and engraftment abilities vital for regenerative therapies, but these diminish during ex vivo culture. This study investigates how substrate stiffness regulates the balance between dental pulp stem cell (DPSC) quiescence, activation, and senescence and explores the role of extracellular matrix stiffness in modulating DPSC fate via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway.

Methods: Polydimethylsiloxane substrates with varying stiffness in 2D (2 kPa, 50 kPa) and 3D (50 kPa) were fabricated. Mechanical properties and porosity were characterized. Human DPSCs were cultured for 7 and 14 days. Senescence was assessed by senescence β-galactosidase activity, nuclear changes by immunofluorescence staining, and gene expression of quiescence, self-renewal, and senescence markers by reverse transcription quantitative polymerase chain reaction. NF-κB activation was analyzed through p65 nuclear translocation. Statistical analysis employed one-way analysis of variance with post-Tukey tests (P < .05).

Results: The porous (310 ± 63 μm) 3D substrate had 50 kPa stiffness. DPSCs on 50 kPa substrates exhibited increased nuclear size and senescence in both 2D and 3D contexts. Softer 2 kPa substrates promoted quiescence, evidenced by reduced chromatin condensation and senescence, alongside upregulation of quiescence associated genes (BMI-1) and pluripotency markers (NANOG, OCT4, SOX2). NF-κB activation was observed on soft substrates, marked by nuclear translocation of p65 and upregulated NF-κB pathway genes, correlating with enhanced stemness and reduced senescence.

Conclusions: This study highlights the pivotal role of substrate stiffness in modulating stem cell fate. Softer substrates preserve DPSC quiescence, reduce senescence, and enhance stemness through NF-κB pathway activation, offering insights into optimizing ex vivo DPSC expansion for therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of endodontics
Journal of endodontics 医学-牙科与口腔外科
CiteScore
8.80
自引率
9.50%
发文量
224
审稿时长
42 days
期刊介绍: The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信