Ángela Del Águila, Lihong Dang, Ran Zhang, Jin Zhang, Ata Ur Rehman, Feng Xu, Ashis Dhar, Xiao-Ping Zhong, Huaxin Sheng, Wei Yang
{"title":"糖皮质激素信号介导小鼠心脏骤停后的淋巴系统损伤。","authors":"Ángela Del Águila, Lihong Dang, Ran Zhang, Jin Zhang, Ata Ur Rehman, Feng Xu, Ashis Dhar, Xiao-Ping Zhong, Huaxin Sheng, Wei Yang","doi":"10.1177/0271678X251314321","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high. This has been attributed to post-CA syndrome of which an imbalanced immune response is a crucial component. Using a murine CA model, we have shown that a profound immunosuppressive phase, characterized by severe lymphopenia, ensues following the initial pro-inflammatory response after CA. In the current study, we found that T and B lymphopoiesis was greatly impaired, as evidenced by the rapid and marked depletion of double-positive T cells and pre-B cells in the thymus and bone marrow, respectively. Our data then demonstrated that pharmacologic suppression of glucocorticoid signaling after CA significantly attenuated lymphopoiesis impairment, thereby mitigating post-CA lymphopenia. Lastly, we showed that specific deletion of the glucocorticoid receptor in T or B cells largely prevented the CA-induced depletion of immature lymphocyte populations in the thymus or bone marrow, respectively. Together, our findings indicate that glucocorticoid signaling mediates post-CA impairment of lymphopoiesis, a key contributor to post-CA immunosuppression.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314321"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752156/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glucocorticoid signaling mediates lymphopoiesis impairment after cardiac arrest in mice.\",\"authors\":\"Ángela Del Águila, Lihong Dang, Ran Zhang, Jin Zhang, Ata Ur Rehman, Feng Xu, Ashis Dhar, Xiao-Ping Zhong, Huaxin Sheng, Wei Yang\",\"doi\":\"10.1177/0271678X251314321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high. This has been attributed to post-CA syndrome of which an imbalanced immune response is a crucial component. Using a murine CA model, we have shown that a profound immunosuppressive phase, characterized by severe lymphopenia, ensues following the initial pro-inflammatory response after CA. In the current study, we found that T and B lymphopoiesis was greatly impaired, as evidenced by the rapid and marked depletion of double-positive T cells and pre-B cells in the thymus and bone marrow, respectively. Our data then demonstrated that pharmacologic suppression of glucocorticoid signaling after CA significantly attenuated lymphopoiesis impairment, thereby mitigating post-CA lymphopenia. Lastly, we showed that specific deletion of the glucocorticoid receptor in T or B cells largely prevented the CA-induced depletion of immature lymphocyte populations in the thymus or bone marrow, respectively. Together, our findings indicate that glucocorticoid signaling mediates post-CA impairment of lymphopoiesis, a key contributor to post-CA immunosuppression.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X251314321\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752156/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X251314321\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251314321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Glucocorticoid signaling mediates lymphopoiesis impairment after cardiac arrest in mice.
Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high. This has been attributed to post-CA syndrome of which an imbalanced immune response is a crucial component. Using a murine CA model, we have shown that a profound immunosuppressive phase, characterized by severe lymphopenia, ensues following the initial pro-inflammatory response after CA. In the current study, we found that T and B lymphopoiesis was greatly impaired, as evidenced by the rapid and marked depletion of double-positive T cells and pre-B cells in the thymus and bone marrow, respectively. Our data then demonstrated that pharmacologic suppression of glucocorticoid signaling after CA significantly attenuated lymphopoiesis impairment, thereby mitigating post-CA lymphopenia. Lastly, we showed that specific deletion of the glucocorticoid receptor in T or B cells largely prevented the CA-induced depletion of immature lymphocyte populations in the thymus or bone marrow, respectively. Together, our findings indicate that glucocorticoid signaling mediates post-CA impairment of lymphopoiesis, a key contributor to post-CA immunosuppression.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.