基于贝叶斯神经网络的高光谱图像皮肤生理参数鲁棒估计。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-01-01 Epub Date: 2025-01-16 DOI:10.1117/1.JBO.30.1.016004
Teo Manojlović, Tadej Tomanič, Ivan Štajduhar, Matija Milanič
{"title":"基于贝叶斯神经网络的高光谱图像皮肤生理参数鲁棒估计。","authors":"Teo Manojlović, Tadej Tomanič, Ivan Štajduhar, Matija Milanič","doi":"10.1117/1.JBO.30.1.016004","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).</p><p><strong>Aim: </strong>We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.</p><p><strong>Approach: </strong>We propose a two-component system for extracting physiological parameters from hyperspectral images. First, our system models the relationship between the measured spectra and the tissue parameters as a distribution rather than a point estimate and is thus able to generate multiple possible solutions. Second, the proposed tissue parameters are then refined using the neural network that approximates the biological tissue model.</p><p><strong>Results: </strong>The proposed model was tested on simulated and <i>in vivo</i> data. It outperformed current models with an overall mean absolute error of 0.0141 and can be used as a faster alternative to the IAD algorithm.</p><p><strong>Conclusions: </strong>Results suggest that Bayesian neural networks coupled with the approximation of a biological tissue model can be used to reliably and accurately extract tissue properties from hyperspectral images on the fly.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 1","pages":"016004"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust estimation of skin physiological parameters from hyperspectral images using Bayesian neural networks.\",\"authors\":\"Teo Manojlović, Tadej Tomanič, Ivan Štajduhar, Matija Milanič\",\"doi\":\"10.1117/1.JBO.30.1.016004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).</p><p><strong>Aim: </strong>We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.</p><p><strong>Approach: </strong>We propose a two-component system for extracting physiological parameters from hyperspectral images. First, our system models the relationship between the measured spectra and the tissue parameters as a distribution rather than a point estimate and is thus able to generate multiple possible solutions. Second, the proposed tissue parameters are then refined using the neural network that approximates the biological tissue model.</p><p><strong>Results: </strong>The proposed model was tested on simulated and <i>in vivo</i> data. It outperformed current models with an overall mean absolute error of 0.0141 and can be used as a faster alternative to the IAD algorithm.</p><p><strong>Conclusions: </strong>Results suggest that Bayesian neural networks coupled with the approximation of a biological tissue model can be used to reliably and accurately extract tissue properties from hyperspectral images on the fly.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 1\",\"pages\":\"016004\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.1.016004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.1.016004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:用于直接从高光谱图像中提取组织参数的机器学习模型最近得到了广泛的研究,因为它们代表了一种更快的替代众所周知的迭代方法,如逆蒙特卡罗和逆加法加倍(IAD)。目的:建立贝叶斯神经网络模型,对高光谱图像的生理参数进行鲁棒预测。方法:提出了一种双组分系统,用于从高光谱图像中提取生理参数。首先,我们的系统将测量光谱与组织参数之间的关系建模为分布而不是点估计,因此能够生成多个可能的解决方案。其次,使用近似生物组织模型的神经网络对提出的组织参数进行细化。结果:该模型在模拟和体内数据上均得到了验证。它优于目前的模型,总体平均绝对误差为0.0141,可以作为IAD算法的更快替代方案。结论:结果表明,贝叶斯神经网络结合近似的生物组织模型可以可靠、准确地从高光谱图像中提取组织特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust estimation of skin physiological parameters from hyperspectral images using Bayesian neural networks.

Significance: Machine learning models for the direct extraction of tissue parameters from hyperspectral images have been extensively researched recently, as they represent a faster alternative to the well-known iterative methods such as inverse Monte Carlo and inverse adding-doubling (IAD).

Aim: We aim to develop a Bayesian neural network model for robust prediction of physiological parameters from hyperspectral images.

Approach: We propose a two-component system for extracting physiological parameters from hyperspectral images. First, our system models the relationship between the measured spectra and the tissue parameters as a distribution rather than a point estimate and is thus able to generate multiple possible solutions. Second, the proposed tissue parameters are then refined using the neural network that approximates the biological tissue model.

Results: The proposed model was tested on simulated and in vivo data. It outperformed current models with an overall mean absolute error of 0.0141 and can be used as a faster alternative to the IAD algorithm.

Conclusions: Results suggest that Bayesian neural networks coupled with the approximation of a biological tissue model can be used to reliably and accurately extract tissue properties from hyperspectral images on the fly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信