利用丝瓜络进行低成本微血管光声成像。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-01-01 Epub Date: 2025-01-20 DOI:10.1117/1.JBO.30.1.016006
Jinhua Xu, Yixiao Lin, Sanskar Thakur, Haolin Nie, Lukai Wang, Quing Zhu
{"title":"利用丝瓜络进行低成本微血管光声成像。","authors":"Jinhua Xu, Yixiao Lin, Sanskar Thakur, Haolin Nie, Lukai Wang, Quing Zhu","doi":"10.1117/1.JBO.30.1.016006","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Existing photoacoustic phantoms are unable to mimic complex microvascular structures with varying sizes and distributions. A suitable material with structures that mimic intricate microvascular networks is needed.</p><p><strong>Aim: </strong>Our aim is to introduce loofah as a natural phantom material with complex fiber networks ranging from 50 to <math><mrow><mn>300</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , enabling the fabrication of phantoms with controlled optical properties comparable to those of human microvasculature.</p><p><strong>Approach: </strong>By introducing a controllable chromophore into the loofah material, we controlled its absorption properties. The loofah's vasculature-mimetic capabilities and stability in photoacoustic signal generation were evaluated using co-registered ultrasound, acoustic-resolution photoacoustic microscopy (ARPAM), and optical-resolution photoacoustic microscopy (ORPAM).</p><p><strong>Results: </strong>ORPAM results confirmed the loofah's ability to control chromophore distribution, leading to consistent and regulated photoacoustic signals. ARPAM results demonstrated that the loofah phantom effectively replicates vascular structures, exhibiting superior performance in mimicking microvascular networks compared with commonly used tissue-mimetic phantoms. The dominant diameter range of the phantom's microvasculature was between 100 and <math><mrow><mn>250</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , aligning well with the targeted range and facilitating meaningful comparisons with human vascular structures.</p><p><strong>Conclusions: </strong>The loofah material provides a low-cost and effective method for creating submillimeter microvascular phantoms for photoacoustic imaging. Its exceptional morphology and customizability allow it to be shaped into various vascular network configurations, enhancing the fidelity of phantom imaging and assisting in system calibration and validation. In addition, data obtained from this realistic microvascular phantom can offer greater opportunities for training machine learning models.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 1","pages":"016006"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745268/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low-cost microvascular phantom for photoacoustic imaging using loofah.\",\"authors\":\"Jinhua Xu, Yixiao Lin, Sanskar Thakur, Haolin Nie, Lukai Wang, Quing Zhu\",\"doi\":\"10.1117/1.JBO.30.1.016006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Existing photoacoustic phantoms are unable to mimic complex microvascular structures with varying sizes and distributions. A suitable material with structures that mimic intricate microvascular networks is needed.</p><p><strong>Aim: </strong>Our aim is to introduce loofah as a natural phantom material with complex fiber networks ranging from 50 to <math><mrow><mn>300</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , enabling the fabrication of phantoms with controlled optical properties comparable to those of human microvasculature.</p><p><strong>Approach: </strong>By introducing a controllable chromophore into the loofah material, we controlled its absorption properties. The loofah's vasculature-mimetic capabilities and stability in photoacoustic signal generation were evaluated using co-registered ultrasound, acoustic-resolution photoacoustic microscopy (ARPAM), and optical-resolution photoacoustic microscopy (ORPAM).</p><p><strong>Results: </strong>ORPAM results confirmed the loofah's ability to control chromophore distribution, leading to consistent and regulated photoacoustic signals. ARPAM results demonstrated that the loofah phantom effectively replicates vascular structures, exhibiting superior performance in mimicking microvascular networks compared with commonly used tissue-mimetic phantoms. The dominant diameter range of the phantom's microvasculature was between 100 and <math><mrow><mn>250</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , aligning well with the targeted range and facilitating meaningful comparisons with human vascular structures.</p><p><strong>Conclusions: </strong>The loofah material provides a low-cost and effective method for creating submillimeter microvascular phantoms for photoacoustic imaging. Its exceptional morphology and customizability allow it to be shaped into various vascular network configurations, enhancing the fidelity of phantom imaging and assisting in system calibration and validation. In addition, data obtained from this realistic microvascular phantom can offer greater opportunities for training machine learning models.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 1\",\"pages\":\"016006\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745268/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.1.016006\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.1.016006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:现有的光声幻象无法模拟大小和分布各异的复杂微血管结构。需要一种具有模拟复杂微血管网络结构的合适材料。目的:我们的目标是引入丝瓜络作为一种具有50至300 μ m复杂纤维网络的天然幽灵材料,使制造具有与人体微血管相当的可控光学特性的幽灵成为可能。方法:通过在丝瓜络材料中引入可控发色团,对丝瓜络材料的吸收特性进行控制。利用超声、声分辨率光声显微镜(ARPAM)和光分辨率光声显微镜(ORPAM)对丝瓜络的血管模拟能力和光声信号产生的稳定性进行了评估。结果:ORPAM结果证实丝瓜丝瓜控制发色团分布的能力,导致光声信号的一致和调节。ARPAM结果表明丝瓜络假体可以有效地复制血管结构,与常用的组织模拟假体相比,在模拟微血管网络方面表现出优越的性能。幻影微血管的主要直径范围在100 ~ 250 μ m之间,与目标范围一致,便于与人体血管结构进行有意义的比较。结论:丝瓜络材料为制备亚毫米微血管光声成像提供了一种低成本、有效的方法。其独特的形态和可定制性使其能够形成各种血管网络配置,增强了幻影成像的保真度,并有助于系统校准和验证。此外,从这种逼真的微血管幻影中获得的数据可以为训练机器学习模型提供更大的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost microvascular phantom for photoacoustic imaging using loofah.

Significance: Existing photoacoustic phantoms are unable to mimic complex microvascular structures with varying sizes and distributions. A suitable material with structures that mimic intricate microvascular networks is needed.

Aim: Our aim is to introduce loofah as a natural phantom material with complex fiber networks ranging from 50 to 300    μ m , enabling the fabrication of phantoms with controlled optical properties comparable to those of human microvasculature.

Approach: By introducing a controllable chromophore into the loofah material, we controlled its absorption properties. The loofah's vasculature-mimetic capabilities and stability in photoacoustic signal generation were evaluated using co-registered ultrasound, acoustic-resolution photoacoustic microscopy (ARPAM), and optical-resolution photoacoustic microscopy (ORPAM).

Results: ORPAM results confirmed the loofah's ability to control chromophore distribution, leading to consistent and regulated photoacoustic signals. ARPAM results demonstrated that the loofah phantom effectively replicates vascular structures, exhibiting superior performance in mimicking microvascular networks compared with commonly used tissue-mimetic phantoms. The dominant diameter range of the phantom's microvasculature was between 100 and 250    μ m , aligning well with the targeted range and facilitating meaningful comparisons with human vascular structures.

Conclusions: The loofah material provides a low-cost and effective method for creating submillimeter microvascular phantoms for photoacoustic imaging. Its exceptional morphology and customizability allow it to be shaped into various vascular network configurations, enhancing the fidelity of phantom imaging and assisting in system calibration and validation. In addition, data obtained from this realistic microvascular phantom can offer greater opportunities for training machine learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信