基于等电子双原子势的炼金术调和近似:Δ-machine学习的基础基线。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Simon León Krug, Danish Khan, O Anatole von Lilienfeld
{"title":"基于等电子双原子势的炼金术调和近似:Δ-machine学习的基础基线。","authors":"Simon León Krug, Danish Khan, O Anatole von Lilienfeld","doi":"10.1063/5.0241872","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.7-2.5 Å and differences in nuclear charge from which only one single point (with elements of nuclear charge Z1, Z2, and distance d0) is drawn to calibrate Ec. Using reference data from pbe0/cc-pVDZ, we present numerical evidence for the electronic ground-state of all neutral diatomics with 8, 10, 12, and 14 electrons. We assess the validity of our model by comparison to legacy interatomic potentials (harmonic oscillator, Lennard-Jones, and Morse) within the most relevant range of binding (0.7-2.5 Å) and find comparable accuracy if restricted to single diatomics and significantly better predictive power when extrapolating to the entire iso-electronic series. We also investigated Δ-learning of the electronic absolute energy using our model as a baseline. This baseline model results in a systematic improvement, effectively reducing training data needed for reaching chemical accuracy by up to an order of magnitude from ∼1000 to ∼100. By contrast, using AHA+Morse as a baseline hardly leads to any improvement and sometimes even deteriorates the predictive power. Inferring the energy of unseen CO converges to a prediction error of ∼0.1 Ha in direct learning and ∼0.04 Ha with our baseline.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alchemical harmonic approximation based potential for iso-electronic diatomics: Foundational baseline for Δ-machine learning.\",\"authors\":\"Simon León Krug, Danish Khan, O Anatole von Lilienfeld\",\"doi\":\"10.1063/5.0241872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.7-2.5 Å and differences in nuclear charge from which only one single point (with elements of nuclear charge Z1, Z2, and distance d0) is drawn to calibrate Ec. Using reference data from pbe0/cc-pVDZ, we present numerical evidence for the electronic ground-state of all neutral diatomics with 8, 10, 12, and 14 electrons. We assess the validity of our model by comparison to legacy interatomic potentials (harmonic oscillator, Lennard-Jones, and Morse) within the most relevant range of binding (0.7-2.5 Å) and find comparable accuracy if restricted to single diatomics and significantly better predictive power when extrapolating to the entire iso-electronic series. We also investigated Δ-learning of the electronic absolute energy using our model as a baseline. This baseline model results in a systematic improvement, effectively reducing training data needed for reaching chemical accuracy by up to an order of magnitude from ∼1000 to ∼100. By contrast, using AHA+Morse as a baseline hardly leads to any improvement and sometimes even deteriorates the predictive power. Inferring the energy of unseen CO converges to a prediction error of ∼0.1 Ha in direct learning and ∼0.04 Ha with our baseline.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241872\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0241872","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

引入了固定原子间距离下电荷中性等电子双原子绝对电子能量的炼金术调和近似。为了解释距离的变化,我们将AHA与电子结合势的解析结合起来,E(d)=(Eu-Es)Ec- eseu - esd /d0+Es,其中Eu, Ec, Es分别对应于统一原子的能量,在d0校准,以及无限分离原子的总和。我们的模型涵盖了距离为0.7-2.5 Å的二维电子势能面和核电荷的差异,从中只绘制一个单点(核电荷为Z1, Z2和距离为d0的元素)来校准Ec。利用pbe0/cc-pVDZ的参考数据,我们给出了所有具有8、10、12和14个电子的中性双原子的电子基态的数值证据。我们通过与传统的原子间势(谐振子,Lennard-Jones和Morse)在最相关的结合范围(0.7-2.5 Å)进行比较来评估我们模型的有效性,并发现如果仅限于单个双原子,则具有相当的准确性,并且当外推到整个等电子系列时,预测能力明显更好。我们还研究了Δ-learning的电子绝对能量使用我们的模型作为基线。该基线模型导致了系统的改进,有效地减少了达到化学准确度所需的训练数据,从~ 1000到~ 100的数量级。相比之下,使用AHA+Morse作为基线几乎没有任何改善,有时甚至会降低预测能力。在直接学习中推断看不见的CO能量的预测误差为~ 0.1 Ha,在我们的基线中为~ 0.04 Ha。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alchemical harmonic approximation based potential for iso-electronic diatomics: Foundational baseline for Δ-machine learning.

We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.7-2.5 Å and differences in nuclear charge from which only one single point (with elements of nuclear charge Z1, Z2, and distance d0) is drawn to calibrate Ec. Using reference data from pbe0/cc-pVDZ, we present numerical evidence for the electronic ground-state of all neutral diatomics with 8, 10, 12, and 14 electrons. We assess the validity of our model by comparison to legacy interatomic potentials (harmonic oscillator, Lennard-Jones, and Morse) within the most relevant range of binding (0.7-2.5 Å) and find comparable accuracy if restricted to single diatomics and significantly better predictive power when extrapolating to the entire iso-electronic series. We also investigated Δ-learning of the electronic absolute energy using our model as a baseline. This baseline model results in a systematic improvement, effectively reducing training data needed for reaching chemical accuracy by up to an order of magnitude from ∼1000 to ∼100. By contrast, using AHA+Morse as a baseline hardly leads to any improvement and sometimes even deteriorates the predictive power. Inferring the energy of unseen CO converges to a prediction error of ∼0.1 Ha in direct learning and ∼0.04 Ha with our baseline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信