斑片状粒子流体模型的取向结构:模拟、积分方程、密度泛函理论和机器学习。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Alessandro Simon, Luc Belloni, Daniel Borgis, Martin Oettel
{"title":"斑片状粒子流体模型的取向结构:模拟、积分方程、密度泛函理论和机器学习。","authors":"Alessandro Simon, Luc Belloni, Daniel Borgis, Martin Oettel","doi":"10.1063/5.0248694","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the orientational properties of a homogeneous and inhomogeneous tetrahedral four-patch fluid (Bol-Kern-Frenkel model). Using integral equations, either (i) HNC or (ii) a modified HNC scheme with a simulation input, the full orientational dependence of pair and direct correlation functions is determined. Density functionals for the inhomogeneous problem are constructed via two different methods. The first, molecular density functional theory, utilizes the full direct correlation function and an isotropic hard-sphere bridge functional. The second method, a machine learning approach, uses a decomposition of the functional into an isotropic reference part and a mean-field orientational part, where both parts are improved by machine learning techniques. A comparison with the simulation data at hard walls and around hard tracers shows a similar performance of the two functionals. Machine learning strategies are discussed to eliminate residual differences, with the goal of obtaining machine-learning enhanced functionals for the general anisotropic fluid.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The orientational structure of a model patchy particle fluid: Simulations, integral equations, density functional theory, and machine learning.\",\"authors\":\"Alessandro Simon, Luc Belloni, Daniel Borgis, Martin Oettel\",\"doi\":\"10.1063/5.0248694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the orientational properties of a homogeneous and inhomogeneous tetrahedral four-patch fluid (Bol-Kern-Frenkel model). Using integral equations, either (i) HNC or (ii) a modified HNC scheme with a simulation input, the full orientational dependence of pair and direct correlation functions is determined. Density functionals for the inhomogeneous problem are constructed via two different methods. The first, molecular density functional theory, utilizes the full direct correlation function and an isotropic hard-sphere bridge functional. The second method, a machine learning approach, uses a decomposition of the functional into an isotropic reference part and a mean-field orientational part, where both parts are improved by machine learning techniques. A comparison with the simulation data at hard walls and around hard tracers shows a similar performance of the two functionals. Machine learning strategies are discussed to eliminate residual differences, with the goal of obtaining machine-learning enhanced functionals for the general anisotropic fluid.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0248694\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0248694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了均匀和非均匀四面体四斑块流体的取向特性(boll - kern - frenkel模型)。利用积分方程(i) HNC或(ii)带有模拟输入的改进HNC方案,确定了对函数和直接相关函数的完全方向依赖性。用两种不同的方法构造了非齐次问题的密度泛函。第一种是分子密度泛函理论,它利用了全直接相关函数和各向同性硬球桥泛函。第二种方法是机器学习方法,将函数分解为各向同性参考部分和平均场定向部分,其中这两个部分都通过机器学习技术进行改进。与硬壁和硬示踪剂周围的模拟数据的比较表明,这两个函数的性能相似。讨论了消除残余差异的机器学习策略,目的是获得一般各向异性流体的机器学习增强函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The orientational structure of a model patchy particle fluid: Simulations, integral equations, density functional theory, and machine learning.

We investigate the orientational properties of a homogeneous and inhomogeneous tetrahedral four-patch fluid (Bol-Kern-Frenkel model). Using integral equations, either (i) HNC or (ii) a modified HNC scheme with a simulation input, the full orientational dependence of pair and direct correlation functions is determined. Density functionals for the inhomogeneous problem are constructed via two different methods. The first, molecular density functional theory, utilizes the full direct correlation function and an isotropic hard-sphere bridge functional. The second method, a machine learning approach, uses a decomposition of the functional into an isotropic reference part and a mean-field orientational part, where both parts are improved by machine learning techniques. A comparison with the simulation data at hard walls and around hard tracers shows a similar performance of the two functionals. Machine learning strategies are discussed to eliminate residual differences, with the goal of obtaining machine-learning enhanced functionals for the general anisotropic fluid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信