{"title":"无活动性肺部疾病的健康受试者的计算机断层扫描上的中央气道功能障碍的肺量测定。","authors":"Takafumi Shimada, Naoya Tanabe, Fumi Mochizuki, Hiroaki Iijima, Kaoruko Shimizu, Shotaro Chubachi, Kazuya Tanimura, Susumu Sato, Toyohiro Hirai, Nobuyuki Hizawa","doi":"10.1152/japplphysiol.00765.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The original concept of the airway-to-lung size mismatch, termed dysanapsis, was introduced on spirometry and was extended by computed tomography (CT) evaluation of the central airways. CT-assessed dysanapsis allows a risk estimation of lung disease development in healthy subjects, although radiation exposure limits its use, particularly for younger subjects. This study investigated which spirometry indices can be used to estimate CT-assessed central airway dysanapsis in healthy subjects. In consecutive lung cancer screening subjects without active lung diseases, the dysanapsis ratio (DR), forced mid-expiratory flow/forced vital capacity (FEF<sub>25-75</sub>/FVC), forced expiratory volume in 1 s/FVC (FEV<sub>1</sub>/FVC), and peak expiratory flow/FVC (PEF/FVC) were obtained via spirometry. The airway-to-lung size ratio for four locations, including the trachea, both main bronchi, and bronchus intermedius (ALR4), and for 14 locations, including the same four airways and 10 segmental and subsegmental airways (ALR14), were obtained via CT. According to the quartiles of the ALR14 or ALR4, 163 male and 190 female subjects were divided into four groups. CT-assessed dysanapsis was defined as the lowest quartile of the ALR14 (or ALR4). Among the spirometry indices, the area under the curve (AUC) for detecting the lowest ALR14 group was the highest for DR (0.80 and 0.78 for males and females, respectively). In contrast, the AUC for detecting the lowest ALR4 group was the highest for PEF/FVC (0.67 and 0.77 for males and females, respectively). DR and PEF/FVC on spirometry could be associated with CT-assessed dysanapsis, but the associations varied depending on the airway locations used for the ALR calculation.<b>NEW & NOTEWORTHY</b> The airway-to-lung size discrepancy on computed tomography (CT-assessed dysanapsis) highlights a lifelong risk for developing lung diseases. This study demonstrated that the spirometric index of the dysanapsis ratio can be used for estimating CT-assessed dysanapsis of the entire central airway tree from the trachea to subsegmental airways, whereas a novel index, peak expiratory flow/forced vital capacity (PEF/FVC), can be used for estimating CT-assessed dysanapsis of the extrapulmonary airways (the trachea, main bronchus, and bronchus intermedius).</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"483-491"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spirometry estimation of central airway dysanapsis on computed tomography in healthy subjects without active lung diseases.\",\"authors\":\"Takafumi Shimada, Naoya Tanabe, Fumi Mochizuki, Hiroaki Iijima, Kaoruko Shimizu, Shotaro Chubachi, Kazuya Tanimura, Susumu Sato, Toyohiro Hirai, Nobuyuki Hizawa\",\"doi\":\"10.1152/japplphysiol.00765.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The original concept of the airway-to-lung size mismatch, termed dysanapsis, was introduced on spirometry and was extended by computed tomography (CT) evaluation of the central airways. CT-assessed dysanapsis allows a risk estimation of lung disease development in healthy subjects, although radiation exposure limits its use, particularly for younger subjects. This study investigated which spirometry indices can be used to estimate CT-assessed central airway dysanapsis in healthy subjects. In consecutive lung cancer screening subjects without active lung diseases, the dysanapsis ratio (DR), forced mid-expiratory flow/forced vital capacity (FEF<sub>25-75</sub>/FVC), forced expiratory volume in 1 s/FVC (FEV<sub>1</sub>/FVC), and peak expiratory flow/FVC (PEF/FVC) were obtained via spirometry. The airway-to-lung size ratio for four locations, including the trachea, both main bronchi, and bronchus intermedius (ALR4), and for 14 locations, including the same four airways and 10 segmental and subsegmental airways (ALR14), were obtained via CT. According to the quartiles of the ALR14 or ALR4, 163 male and 190 female subjects were divided into four groups. CT-assessed dysanapsis was defined as the lowest quartile of the ALR14 (or ALR4). Among the spirometry indices, the area under the curve (AUC) for detecting the lowest ALR14 group was the highest for DR (0.80 and 0.78 for males and females, respectively). In contrast, the AUC for detecting the lowest ALR4 group was the highest for PEF/FVC (0.67 and 0.77 for males and females, respectively). DR and PEF/FVC on spirometry could be associated with CT-assessed dysanapsis, but the associations varied depending on the airway locations used for the ALR calculation.<b>NEW & NOTEWORTHY</b> The airway-to-lung size discrepancy on computed tomography (CT-assessed dysanapsis) highlights a lifelong risk for developing lung diseases. This study demonstrated that the spirometric index of the dysanapsis ratio can be used for estimating CT-assessed dysanapsis of the entire central airway tree from the trachea to subsegmental airways, whereas a novel index, peak expiratory flow/forced vital capacity (PEF/FVC), can be used for estimating CT-assessed dysanapsis of the extrapulmonary airways (the trachea, main bronchus, and bronchus intermedius).</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\" \",\"pages\":\"483-491\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00765.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00765.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Spirometry estimation of central airway dysanapsis on computed tomography in healthy subjects without active lung diseases.
The original concept of the airway-to-lung size mismatch, termed dysanapsis, was introduced on spirometry and was extended by computed tomography (CT) evaluation of the central airways. CT-assessed dysanapsis allows a risk estimation of lung disease development in healthy subjects, although radiation exposure limits its use, particularly for younger subjects. This study investigated which spirometry indices can be used to estimate CT-assessed central airway dysanapsis in healthy subjects. In consecutive lung cancer screening subjects without active lung diseases, the dysanapsis ratio (DR), forced mid-expiratory flow/forced vital capacity (FEF25-75/FVC), forced expiratory volume in 1 s/FVC (FEV1/FVC), and peak expiratory flow/FVC (PEF/FVC) were obtained via spirometry. The airway-to-lung size ratio for four locations, including the trachea, both main bronchi, and bronchus intermedius (ALR4), and for 14 locations, including the same four airways and 10 segmental and subsegmental airways (ALR14), were obtained via CT. According to the quartiles of the ALR14 or ALR4, 163 male and 190 female subjects were divided into four groups. CT-assessed dysanapsis was defined as the lowest quartile of the ALR14 (or ALR4). Among the spirometry indices, the area under the curve (AUC) for detecting the lowest ALR14 group was the highest for DR (0.80 and 0.78 for males and females, respectively). In contrast, the AUC for detecting the lowest ALR4 group was the highest for PEF/FVC (0.67 and 0.77 for males and females, respectively). DR and PEF/FVC on spirometry could be associated with CT-assessed dysanapsis, but the associations varied depending on the airway locations used for the ALR calculation.NEW & NOTEWORTHY The airway-to-lung size discrepancy on computed tomography (CT-assessed dysanapsis) highlights a lifelong risk for developing lung diseases. This study demonstrated that the spirometric index of the dysanapsis ratio can be used for estimating CT-assessed dysanapsis of the entire central airway tree from the trachea to subsegmental airways, whereas a novel index, peak expiratory flow/forced vital capacity (PEF/FVC), can be used for estimating CT-assessed dysanapsis of the extrapulmonary airways (the trachea, main bronchus, and bronchus intermedius).
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.