Alexander J Rosenberg, Alexander Fernandez, Ayrion W Moody, Justin D Sprick
{"title":"远程缺血预处理通过释放内源性阿片减轻缺血再灌注损伤引起的血管功能降低。","authors":"Alexander J Rosenberg, Alexander Fernandez, Ayrion W Moody, Justin D Sprick","doi":"10.1152/japplphysiol.00913.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI. We hypothesized that RIPC would attenuate IRI-induced reductions in brachial artery flow mediated dilation (FMD), and that this would be prevented by systemic opioid receptor blockade. 11 healthy adults (8M/3F, age=28±8y) completed three experimental visits in which IRI was induced via 20-min upper arm ischemia and 20-min reperfusion achieved via upper arm cuff inflation to 250mmHg. FMD was measured at rest and again following IRI. During the control condition, RIPC was not performed. During the RIPC condition, RIPC was performed on the contralateral arm via 4 cycles of 5-min cuff inflation (250mmHg) with 5-min reperfusion. During the opioid receptor blockade condition (Naloxone), RIPC was performed in the presence of systemic opioid receptor blockade via intranasal naloxone (4mg) which was administered during the first 5-min cycle of RIPC. The change in FMD from baseline vs post-IRI were compared between visits via a two-way repeated measures ANOVA (factor 1: <i>time</i>, factor 2, <i>condition</i>) followed by Tukey post-hoc tests. IRI reduced FMD during the Control (Pre=6.1±2.4%, Post=3.5±2.8%, P<0.001) and Naloxone (Pre=6.6±2.7%, Post=3.5±1.9%, P<0.001) conditions but not during the RIPC condition (Pre=5.9±2.2%, Post=4.9±2.8%, P=0.14). These findings demonstrate that RIPC provides vascular protection from IRI in humans through an opioid-dependent mechanism.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Ischemic Preconditioning Attenuates Ischemia-Reperfusion Injury Induced Reductions in Vascular Function through Release of Endogenous Opioids.\",\"authors\":\"Alexander J Rosenberg, Alexander Fernandez, Ayrion W Moody, Justin D Sprick\",\"doi\":\"10.1152/japplphysiol.00913.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI. We hypothesized that RIPC would attenuate IRI-induced reductions in brachial artery flow mediated dilation (FMD), and that this would be prevented by systemic opioid receptor blockade. 11 healthy adults (8M/3F, age=28±8y) completed three experimental visits in which IRI was induced via 20-min upper arm ischemia and 20-min reperfusion achieved via upper arm cuff inflation to 250mmHg. FMD was measured at rest and again following IRI. During the control condition, RIPC was not performed. During the RIPC condition, RIPC was performed on the contralateral arm via 4 cycles of 5-min cuff inflation (250mmHg) with 5-min reperfusion. During the opioid receptor blockade condition (Naloxone), RIPC was performed in the presence of systemic opioid receptor blockade via intranasal naloxone (4mg) which was administered during the first 5-min cycle of RIPC. The change in FMD from baseline vs post-IRI were compared between visits via a two-way repeated measures ANOVA (factor 1: <i>time</i>, factor 2, <i>condition</i>) followed by Tukey post-hoc tests. IRI reduced FMD during the Control (Pre=6.1±2.4%, Post=3.5±2.8%, P<0.001) and Naloxone (Pre=6.6±2.7%, Post=3.5±1.9%, P<0.001) conditions but not during the RIPC condition (Pre=5.9±2.2%, Post=4.9±2.8%, P=0.14). These findings demonstrate that RIPC provides vascular protection from IRI in humans through an opioid-dependent mechanism.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00913.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00913.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Remote Ischemic Preconditioning Attenuates Ischemia-Reperfusion Injury Induced Reductions in Vascular Function through Release of Endogenous Opioids.
Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI. We hypothesized that RIPC would attenuate IRI-induced reductions in brachial artery flow mediated dilation (FMD), and that this would be prevented by systemic opioid receptor blockade. 11 healthy adults (8M/3F, age=28±8y) completed three experimental visits in which IRI was induced via 20-min upper arm ischemia and 20-min reperfusion achieved via upper arm cuff inflation to 250mmHg. FMD was measured at rest and again following IRI. During the control condition, RIPC was not performed. During the RIPC condition, RIPC was performed on the contralateral arm via 4 cycles of 5-min cuff inflation (250mmHg) with 5-min reperfusion. During the opioid receptor blockade condition (Naloxone), RIPC was performed in the presence of systemic opioid receptor blockade via intranasal naloxone (4mg) which was administered during the first 5-min cycle of RIPC. The change in FMD from baseline vs post-IRI were compared between visits via a two-way repeated measures ANOVA (factor 1: time, factor 2, condition) followed by Tukey post-hoc tests. IRI reduced FMD during the Control (Pre=6.1±2.4%, Post=3.5±2.8%, P<0.001) and Naloxone (Pre=6.6±2.7%, Post=3.5±1.9%, P<0.001) conditions but not during the RIPC condition (Pre=5.9±2.2%, Post=4.9±2.8%, P=0.14). These findings demonstrate that RIPC provides vascular protection from IRI in humans through an opioid-dependent mechanism.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.