Stuart P S Mladen, Stacey P A Forbes, Abby K Zedic, Vaughn S England, Patrick J Drouin, Michael E Tschakovsky
{"title":"运动时腿部血流受限:代偿性心血管机制的证据和意义。","authors":"Stuart P S Mladen, Stacey P A Forbes, Abby K Zedic, Vaughn S England, Patrick J Drouin, Michael E Tschakovsky","doi":"10.1152/japplphysiol.00772.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating \"blood flow restriction\" (BFR). However, no study has validated this assumption. Eighteen healthy young participants (9 F) performed two-legged knee flexion/extension exercise at 25% WR<sub>peak</sub> with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP, and 40% AOP. Leg blood flow (LBF; Doppler and echo ultrasound) and cardiac output (CO; finger photoplethysmography) were measured during rest and exercise. LBF values were doubled to account for both exercising legs. AOP (20% and 40%) reduced exercising LBF in a dose-response manner (<i>P</i> < 0.01). However, the magnitude of the leg blood flow restriction by 40% AOP was progressively attenuated across the exercise bout (5-15 s: 37%, 50-70 s: 20%, 240-300 s: 16%; <i>P</i> < 0.01) due to compensatory increases in leg vascular conductance (LVC) (<i>P</i> < 0.01). Between 5 and 15 s of exercise, 40% AOP significantly reduced CO compared with CTL and 20% AOP (8.0 ± 1.3 vs. 8.4 ± 1.5 L/min, <i>P</i> < 0.001 and 8.5 ± 1.5, <i>P</i> < 0.001). By 240-300 s, there were no significant differences in CO between cuff pressures (all <i>P</i> > 0.13). Pneumatic cuff inflation at 20% and 40% AOP reduces LBF in a dose-response manner, but this impairment was progressively attenuated across the exercise bout by an increase in LVC. Importantly, this compensatory response differed across participants, which may have implications for the degree of adaptations following BFR training. Furthermore, restoration of normal CO during BFR despite compromised limb perfusion suggests that other tissue perfusion is increased as part of the response.<b>NEW & NOTEWORTHY</b> It remained to be determined whether BFR set below 60% AOP impairs leg blood flow during continuous exercise. We showed that BFR at 20% and 40% AOP impairs exercising leg blood flow in a dose-response manner. However, the leg blood flow impairment was progressively attenuated across the exercise bout. Both initial compromise and partial restoration varied across participants, which may have implications for the degree of muscle adaptations following BFR training.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":"492-507"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leg blood flow during exercise with blood flow restriction: evidence for and implications of compensatory cardiovascular mechanisms.\",\"authors\":\"Stuart P S Mladen, Stacey P A Forbes, Abby K Zedic, Vaughn S England, Patrick J Drouin, Michael E Tschakovsky\",\"doi\":\"10.1152/japplphysiol.00772.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating \\\"blood flow restriction\\\" (BFR). However, no study has validated this assumption. Eighteen healthy young participants (9 F) performed two-legged knee flexion/extension exercise at 25% WR<sub>peak</sub> with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP, and 40% AOP. Leg blood flow (LBF; Doppler and echo ultrasound) and cardiac output (CO; finger photoplethysmography) were measured during rest and exercise. LBF values were doubled to account for both exercising legs. AOP (20% and 40%) reduced exercising LBF in a dose-response manner (<i>P</i> < 0.01). However, the magnitude of the leg blood flow restriction by 40% AOP was progressively attenuated across the exercise bout (5-15 s: 37%, 50-70 s: 20%, 240-300 s: 16%; <i>P</i> < 0.01) due to compensatory increases in leg vascular conductance (LVC) (<i>P</i> < 0.01). Between 5 and 15 s of exercise, 40% AOP significantly reduced CO compared with CTL and 20% AOP (8.0 ± 1.3 vs. 8.4 ± 1.5 L/min, <i>P</i> < 0.001 and 8.5 ± 1.5, <i>P</i> < 0.001). By 240-300 s, there were no significant differences in CO between cuff pressures (all <i>P</i> > 0.13). Pneumatic cuff inflation at 20% and 40% AOP reduces LBF in a dose-response manner, but this impairment was progressively attenuated across the exercise bout by an increase in LVC. Importantly, this compensatory response differed across participants, which may have implications for the degree of adaptations following BFR training. Furthermore, restoration of normal CO during BFR despite compromised limb perfusion suggests that other tissue perfusion is increased as part of the response.<b>NEW & NOTEWORTHY</b> It remained to be determined whether BFR set below 60% AOP impairs leg blood flow during continuous exercise. We showed that BFR at 20% and 40% AOP impairs exercising leg blood flow in a dose-response manner. However, the leg blood flow impairment was progressively attenuated across the exercise bout. Both initial compromise and partial restoration varied across participants, which may have implications for the degree of muscle adaptations following BFR training.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\" \",\"pages\":\"492-507\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00772.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00772.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Leg blood flow during exercise with blood flow restriction: evidence for and implications of compensatory cardiovascular mechanisms.
Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating "blood flow restriction" (BFR). However, no study has validated this assumption. Eighteen healthy young participants (9 F) performed two-legged knee flexion/extension exercise at 25% WRpeak with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP, and 40% AOP. Leg blood flow (LBF; Doppler and echo ultrasound) and cardiac output (CO; finger photoplethysmography) were measured during rest and exercise. LBF values were doubled to account for both exercising legs. AOP (20% and 40%) reduced exercising LBF in a dose-response manner (P < 0.01). However, the magnitude of the leg blood flow restriction by 40% AOP was progressively attenuated across the exercise bout (5-15 s: 37%, 50-70 s: 20%, 240-300 s: 16%; P < 0.01) due to compensatory increases in leg vascular conductance (LVC) (P < 0.01). Between 5 and 15 s of exercise, 40% AOP significantly reduced CO compared with CTL and 20% AOP (8.0 ± 1.3 vs. 8.4 ± 1.5 L/min, P < 0.001 and 8.5 ± 1.5, P < 0.001). By 240-300 s, there were no significant differences in CO between cuff pressures (all P > 0.13). Pneumatic cuff inflation at 20% and 40% AOP reduces LBF in a dose-response manner, but this impairment was progressively attenuated across the exercise bout by an increase in LVC. Importantly, this compensatory response differed across participants, which may have implications for the degree of adaptations following BFR training. Furthermore, restoration of normal CO during BFR despite compromised limb perfusion suggests that other tissue perfusion is increased as part of the response.NEW & NOTEWORTHY It remained to be determined whether BFR set below 60% AOP impairs leg blood flow during continuous exercise. We showed that BFR at 20% and 40% AOP impairs exercising leg blood flow in a dose-response manner. However, the leg blood flow impairment was progressively attenuated across the exercise bout. Both initial compromise and partial restoration varied across participants, which may have implications for the degree of muscle adaptations following BFR training.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.