不同类型矫形丙烯酸水泥理化性能的比较。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Elnaz Taghizadeh, Mona Navaei-Nigjeh, Masoud Mirkazemi, Mazda Rad-Malekshahi
{"title":"不同类型矫形丙烯酸水泥理化性能的比较。","authors":"Elnaz Taghizadeh, Mona Navaei-Nigjeh, Masoud Mirkazemi, Mazda Rad-Malekshahi","doi":"10.1080/09205063.2024.2449304","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Additionally, gel permeation chromatography (GPC) was used to determine the molecular weight of poly methyl methacrylate (PMMA), which was between 4000 and 6000 Mw. The presence of methyl methacrylate (MMA) monomer observed in all cement within two minutes was determined using gas chromatography-mass spectrometry (GC-MS). Moreover, the images of all radiopaque compounds in the cement were evaluated using Field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray (EDAX-MAP). The study determined the glass transition (Tg) temperature and conducted differential scanning calorimetry (DCS) analysis for each type of cement. In addition, the setting time for various kinds of spinal cord cement was measured to be more than ten minutes. The percentage of benzoyl peroxide in each cement was determined using titration, ranging from 0.6% to 6%. Additionally, cytotoxicity studies were conducted on human osteoblasts (MG63) in cell culture. In this study, we tried to make a trend line for evaluation types of bone cement that would be applicable for both regulatory buddies and researchers in this field.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of physico-chemical properties of different types of orthopedic acrylic cement.\",\"authors\":\"Elnaz Taghizadeh, Mona Navaei-Nigjeh, Masoud Mirkazemi, Mazda Rad-Malekshahi\",\"doi\":\"10.1080/09205063.2024.2449304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Additionally, gel permeation chromatography (GPC) was used to determine the molecular weight of poly methyl methacrylate (PMMA), which was between 4000 and 6000 Mw. The presence of methyl methacrylate (MMA) monomer observed in all cement within two minutes was determined using gas chromatography-mass spectrometry (GC-MS). Moreover, the images of all radiopaque compounds in the cement were evaluated using Field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray (EDAX-MAP). The study determined the glass transition (Tg) temperature and conducted differential scanning calorimetry (DCS) analysis for each type of cement. In addition, the setting time for various kinds of spinal cord cement was measured to be more than ten minutes. The percentage of benzoyl peroxide in each cement was determined using titration, ranging from 0.6% to 6%. Additionally, cytotoxicity studies were conducted on human osteoblasts (MG63) in cell culture. In this study, we tried to make a trend line for evaluation types of bone cement that would be applicable for both regulatory buddies and researchers in this field.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-21\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2449304\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2449304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

分析不同种类的丙烯酸骨水泥的化学成分是了解其性能及其在骨缺损修复中的适用性的必要条件。进行各种化学测试可以对每种水泥的成分,粘度和性能特征提供有价值的见解,因此,我们的研究旨在找到这些产品在医疗应用中的安全标准和有效性。采用核磁共振(H-NMR)和傅里叶变换红外光谱(FTIR)对聚合物进行了表征。此外,采用凝胶渗透色谱法(GPC)测定了聚甲基丙烯酸甲酯(PMMA)的分子量,其分子量在4000 ~ 6000 Mw之间。用气相色谱-质谱联用(GC-MS)测定了所有水泥中2分钟内甲基丙烯酸甲酯(MMA)单体的存在。此外,使用场发射扫描电子显微镜(FESEM)和能量色散x射线(EDAX-MAP)对水泥中所有不透射线化合物的图像进行了评估。研究确定了每种水泥的玻璃化转变(Tg)温度,并对每种水泥进行了差示扫描量热法(DCS)分析。此外,测定了各种脊髓水泥的凝固时间均在十分钟以上。用滴定法测定每种水泥中过氧化苯甲酰的百分比,范围为0.6%至6%。此外,在细胞培养中对人成骨细胞(MG63)进行了细胞毒性研究。在这项研究中,我们试图为骨水泥的评估类型制定一条趋势线,这将适用于该领域的监管伙伴和研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of physico-chemical properties of different types of orthopedic acrylic cement.

Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Additionally, gel permeation chromatography (GPC) was used to determine the molecular weight of poly methyl methacrylate (PMMA), which was between 4000 and 6000 Mw. The presence of methyl methacrylate (MMA) monomer observed in all cement within two minutes was determined using gas chromatography-mass spectrometry (GC-MS). Moreover, the images of all radiopaque compounds in the cement were evaluated using Field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray (EDAX-MAP). The study determined the glass transition (Tg) temperature and conducted differential scanning calorimetry (DCS) analysis for each type of cement. In addition, the setting time for various kinds of spinal cord cement was measured to be more than ten minutes. The percentage of benzoyl peroxide in each cement was determined using titration, ranging from 0.6% to 6%. Additionally, cytotoxicity studies were conducted on human osteoblasts (MG63) in cell culture. In this study, we tried to make a trend line for evaluation types of bone cement that would be applicable for both regulatory buddies and researchers in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信