Jian Li, Yuan-cheng Huang, Jian-ming Deng, Min Yu, Christos C. Zouboulis, Guang-Li Wang, Jing Wang
{"title":"茶(Camellia sinensis)种子皂苷通过AMPK/mTOR通路抑制脂质生成。","authors":"Jian Li, Yuan-cheng Huang, Jian-ming Deng, Min Yu, Christos C. Zouboulis, Guang-Li Wang, Jing Wang","doi":"10.1111/jocd.16793","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Excessive lipogenesis of the skin triggers some dermatological concerns, such as enlarged pores, acne, and blackheads. Although topical drug treatments can offer temporary relief, their prolonged usage may lead to side effects of dryness, irritation, or allergic reactions. Consequently, the development of safer and efficacious ingredients in cosmetics for managing sebum overproduction represents a significant yet challenging endeavor.</p>\n </section>\n \n <section>\n \n <h3> Aim</h3>\n \n <p>Saponins were extracted from tea (<i>Camellia sinensis</i>) seed meal and purified by macroporous resin in order to investigate the impact of tea seed saponins (TSS) on lipid production in human immortalized sebaceous cells. Moreover, we attempted to reveal the underlying mechanism of TSS on the sebosuppression effect in SZ95 sebocytes stimulated by linoleic acid (LA).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The compositions and chemical structures of TSS were determined using UV–vis absorption spectrum, Fourier transform-infrared (FTIR) spectrum, and ultra-high-performance liquid chromatography-mass spectrometry analysis. An in vitro model of cellular lipid accumulation induced by LA was established. Total lipid synthesis in intracellular SZ95 sebocytes was assessed through Nile Red staining, while triglyceride, cholesterol, and fatty acids were quantified by commercially assay kits. Western blot and quantitative real-time polymerase chain reaction were employed to analyze the protein expression levels involved in the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway as well as the downstream protein and mRNA expressions of sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), and fatty acid synthase (FAS). The localizations of SREBP-1 within the cytoplasm or nucleus were characterized using immunofluorescence staining.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Five saponins were identified in the extracted TSS, all of which were oleanic acid-type pentacyclic triterpenes. TSS treatment significantly alleviated LA-induced lipid accumulation in SZ95 sebocytes. In addition, TSS activated the AMPK/mTOR pathway and downregulated the downstream protein and mRNA expression of transcription factors and enzymes, including SREBP-1, PPARγ, and FAS. Moreover, the TSS blocked the nuclear transfer of SREBP-1 from cytoplasm to nucleus.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>In human sebocytes, TSS exhibited sebosuppressive effect as revealed by the inhibited production of total lipids as well as triglyceride, cholesterol, and fatty acids. Moreover, the anti-lipogenesis mechanism by TSS involved the activation of the AMPK/mTOR pathway and downregulated downstream transcription factors and enzymes of SREBP-1, PPARγ, and FAS. Additionally, TSS blocked the SREBP-1 nuclear translocation. These results may justify the potent of TSS as a new candidate for modulating lipogenesis in human SZ95 sebocytes.</p>\n </section>\n </div>","PeriodicalId":15546,"journal":{"name":"Journal of Cosmetic Dermatology","volume":"24 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750075/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tea (Camellia sinensis) Seed Saponins Act as Sebosuppression Agents via the AMPK/mTOR Pathway\",\"authors\":\"Jian Li, Yuan-cheng Huang, Jian-ming Deng, Min Yu, Christos C. Zouboulis, Guang-Li Wang, Jing Wang\",\"doi\":\"10.1111/jocd.16793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Excessive lipogenesis of the skin triggers some dermatological concerns, such as enlarged pores, acne, and blackheads. Although topical drug treatments can offer temporary relief, their prolonged usage may lead to side effects of dryness, irritation, or allergic reactions. Consequently, the development of safer and efficacious ingredients in cosmetics for managing sebum overproduction represents a significant yet challenging endeavor.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Saponins were extracted from tea (<i>Camellia sinensis</i>) seed meal and purified by macroporous resin in order to investigate the impact of tea seed saponins (TSS) on lipid production in human immortalized sebaceous cells. Moreover, we attempted to reveal the underlying mechanism of TSS on the sebosuppression effect in SZ95 sebocytes stimulated by linoleic acid (LA).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The compositions and chemical structures of TSS were determined using UV–vis absorption spectrum, Fourier transform-infrared (FTIR) spectrum, and ultra-high-performance liquid chromatography-mass spectrometry analysis. An in vitro model of cellular lipid accumulation induced by LA was established. Total lipid synthesis in intracellular SZ95 sebocytes was assessed through Nile Red staining, while triglyceride, cholesterol, and fatty acids were quantified by commercially assay kits. Western blot and quantitative real-time polymerase chain reaction were employed to analyze the protein expression levels involved in the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway as well as the downstream protein and mRNA expressions of sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), and fatty acid synthase (FAS). The localizations of SREBP-1 within the cytoplasm or nucleus were characterized using immunofluorescence staining.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Five saponins were identified in the extracted TSS, all of which were oleanic acid-type pentacyclic triterpenes. TSS treatment significantly alleviated LA-induced lipid accumulation in SZ95 sebocytes. In addition, TSS activated the AMPK/mTOR pathway and downregulated the downstream protein and mRNA expression of transcription factors and enzymes, including SREBP-1, PPARγ, and FAS. Moreover, the TSS blocked the nuclear transfer of SREBP-1 from cytoplasm to nucleus.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>In human sebocytes, TSS exhibited sebosuppressive effect as revealed by the inhibited production of total lipids as well as triglyceride, cholesterol, and fatty acids. Moreover, the anti-lipogenesis mechanism by TSS involved the activation of the AMPK/mTOR pathway and downregulated downstream transcription factors and enzymes of SREBP-1, PPARγ, and FAS. Additionally, TSS blocked the SREBP-1 nuclear translocation. These results may justify the potent of TSS as a new candidate for modulating lipogenesis in human SZ95 sebocytes.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15546,\"journal\":{\"name\":\"Journal of Cosmetic Dermatology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750075/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmetic Dermatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jocd.16793\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmetic Dermatology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jocd.16793","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Tea (Camellia sinensis) Seed Saponins Act as Sebosuppression Agents via the AMPK/mTOR Pathway
Background
Excessive lipogenesis of the skin triggers some dermatological concerns, such as enlarged pores, acne, and blackheads. Although topical drug treatments can offer temporary relief, their prolonged usage may lead to side effects of dryness, irritation, or allergic reactions. Consequently, the development of safer and efficacious ingredients in cosmetics for managing sebum overproduction represents a significant yet challenging endeavor.
Aim
Saponins were extracted from tea (Camellia sinensis) seed meal and purified by macroporous resin in order to investigate the impact of tea seed saponins (TSS) on lipid production in human immortalized sebaceous cells. Moreover, we attempted to reveal the underlying mechanism of TSS on the sebosuppression effect in SZ95 sebocytes stimulated by linoleic acid (LA).
Methods
The compositions and chemical structures of TSS were determined using UV–vis absorption spectrum, Fourier transform-infrared (FTIR) spectrum, and ultra-high-performance liquid chromatography-mass spectrometry analysis. An in vitro model of cellular lipid accumulation induced by LA was established. Total lipid synthesis in intracellular SZ95 sebocytes was assessed through Nile Red staining, while triglyceride, cholesterol, and fatty acids were quantified by commercially assay kits. Western blot and quantitative real-time polymerase chain reaction were employed to analyze the protein expression levels involved in the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway as well as the downstream protein and mRNA expressions of sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), and fatty acid synthase (FAS). The localizations of SREBP-1 within the cytoplasm or nucleus were characterized using immunofluorescence staining.
Results
Five saponins were identified in the extracted TSS, all of which were oleanic acid-type pentacyclic triterpenes. TSS treatment significantly alleviated LA-induced lipid accumulation in SZ95 sebocytes. In addition, TSS activated the AMPK/mTOR pathway and downregulated the downstream protein and mRNA expression of transcription factors and enzymes, including SREBP-1, PPARγ, and FAS. Moreover, the TSS blocked the nuclear transfer of SREBP-1 from cytoplasm to nucleus.
Conclusion
In human sebocytes, TSS exhibited sebosuppressive effect as revealed by the inhibited production of total lipids as well as triglyceride, cholesterol, and fatty acids. Moreover, the anti-lipogenesis mechanism by TSS involved the activation of the AMPK/mTOR pathway and downregulated downstream transcription factors and enzymes of SREBP-1, PPARγ, and FAS. Additionally, TSS blocked the SREBP-1 nuclear translocation. These results may justify the potent of TSS as a new candidate for modulating lipogenesis in human SZ95 sebocytes.
期刊介绍:
The Journal of Cosmetic Dermatology publishes high quality, peer-reviewed articles on all aspects of cosmetic dermatology with the aim to foster the highest standards of patient care in cosmetic dermatology. Published quarterly, the Journal of Cosmetic Dermatology facilitates continuing professional development and provides a forum for the exchange of scientific research and innovative techniques.
The scope of coverage includes, but will not be limited to: healthy skin; skin maintenance; ageing skin; photodamage and photoprotection; rejuvenation; biochemistry, endocrinology and neuroimmunology of healthy skin; imaging; skin measurement; quality of life; skin types; sensitive skin; rosacea and acne; sebum; sweat; fat; phlebology; hair conservation, restoration and removal; nails and nail surgery; pigment; psychological and medicolegal issues; retinoids; cosmetic chemistry; dermopharmacy; cosmeceuticals; toiletries; striae; cellulite; cosmetic dermatological surgery; blepharoplasty; liposuction; surgical complications; botulinum; fillers, peels and dermabrasion; local and tumescent anaesthesia; electrosurgery; lasers, including laser physics, laser research and safety, vascular lasers, pigment lasers, hair removal lasers, tattoo removal lasers, resurfacing lasers, dermal remodelling lasers and laser complications.