异质成纤维细胞亚群的协调反应有助于气道重建后手术诱导的应激修复。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Jazmin Calyeca, Zakarie Hussein, Zheng Hong Tan, Lumei Liu, Sayali Dharmadhikari, Kimberly M Shontz, Tatyana A Vetter, Christopher K Breuer, Susan D Reynolds, Tendy Chiang
{"title":"异质成纤维细胞亚群的协调反应有助于气道重建后手术诱导的应激修复。","authors":"Jazmin Calyeca, Zakarie Hussein, Zheng Hong Tan, Lumei Liu, Sayali Dharmadhikari, Kimberly M Shontz, Tatyana A Vetter, Christopher K Breuer, Susan D Reynolds, Tendy Chiang","doi":"10.1172/jci.insight.186263","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNAseq, we analyzed native and reconstructed airways and identified five fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, Adventitial and Airway fibroblasts (Adventitial Fb and Airway Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, Perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and Immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1 activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGFβ. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orchestrated response from heterogenous fibroblast subsets contributes to repair from surgery-induced stress after airway reconstruction.\",\"authors\":\"Jazmin Calyeca, Zakarie Hussein, Zheng Hong Tan, Lumei Liu, Sayali Dharmadhikari, Kimberly M Shontz, Tatyana A Vetter, Christopher K Breuer, Susan D Reynolds, Tendy Chiang\",\"doi\":\"10.1172/jci.insight.186263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNAseq, we analyzed native and reconstructed airways and identified five fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, Adventitial and Airway fibroblasts (Adventitial Fb and Airway Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, Perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and Immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1 activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGFβ. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.186263\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.186263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

气管支气管树手术的发病率很高,超过一半的并发症发生在吻合处。尽管成纤维细胞在气道伤口愈合中起着至关重要的作用,但气道重建的潜在细胞和分子机制尚不清楚。我们假设气道重建引发手术诱导应激(SIS)反应,改变气道组织内成纤维细胞的通讯。使用单细胞RNAseq,我们分析了天然气道和重建气道,并确定了五个成纤维细胞亚群,每个亚群在吻合口、粘膜下、软骨周围和气管旁区域具有不同的空间分布。在稳态过程中,外膜成纤维细胞和气道成纤维细胞(分别为外膜Fb和气道Fb)通过调节ECM的转换来维持组织结构并创造细胞壁龛。在SIS下,软骨膜成纤维细胞(PC-Fb)表现出软骨样基因特征,免疫招募成纤维细胞(IR-Fb)促进细胞浸润。Cthrc1激活的成纤维细胞(Cthrc1+ Fb)主要来源于外膜Fb,主要参与由TGFβ介导的纤维化瘢痕形成和胶原生成。此外,重复SIS导致成纤维细胞状态失衡,有利于CTHRC1+ Fb的出现,并导致成纤维细胞-基底细胞串扰受损。总的来说,这些数据确定了PC、IR和Cthrc1+ Fb是一个信号中枢,而SIS作为一种启动气道重建后重塑的机制,如果不加以控制,可能导致狭窄或吻合口破裂等并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orchestrated response from heterogenous fibroblast subsets contributes to repair from surgery-induced stress after airway reconstruction.

Surgery of the tracheobronchial tree carries high morbidity, with over half of the complications occurring at the anastomosis. Although fibroblasts are crucial in airway wound healing, the underlying cellular and molecular mechanisms in airway reconstruction remain unknown. We hypothesized that airway reconstruction initiates a surgery-induced stress (SIS) response, altering fibroblast communication within airway tissues. Using single-cell RNAseq, we analyzed native and reconstructed airways and identified five fibroblast subpopulations, each with distinct spatial distributions across anastomotic, submucosal, perichondrial, and paratracheal areas. During homeostasis, Adventitial and Airway fibroblasts (Adventitial Fb and Airway Fb, respectively) maintained tissue structure and created cellular niches by regulating ECM turnover. Under SIS, Perichondrial fibroblasts (PC-Fb) exhibited chondroprogenitor-like gene signatures, and Immune-recruiting fibroblasts (IR-Fb) facilitated cell infiltration. Cthrc1 activated fibroblasts (Cthrc1+ Fb), mainly derived from Adventitial Fb, primarily contributed to fibrotic scar formation and collagen production, mediated by TGFβ. Furthermore, repeated SIS created an imbalance in fibroblast states favoring emergence of CTHRC1+ Fb and leading to impaired fibroblasts-basal cell crosstalk. Collectively, these data identify PC, IR, and Cthrc1+ Fb as a signaling hub, with SIS emerging as a mechanism initiating airway remodeling after reconstruction that, if not controlled, may lead to complications such as stenosis or anastomotic breakdown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信