Hanchao Li, Wengang Sun, Yanhua Huang, Qian Li, Hong Tian, Zhiming Hao, Yongwei Huo
{"title":"识别高迁移率组盒1蛋白(HMGB1)的DNA适体的选择和表征及其促炎活性的增强","authors":"Hanchao Li, Wengang Sun, Yanhua Huang, Qian Li, Hong Tian, Zhiming Hao, Yongwei Huo","doi":"10.5812/ijpr-147246","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.</p><p><strong>Objectives: </strong>This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.</p><p><strong>Methods: </strong>In this study, ssDNA aptamers were selected using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The affinity and specificity of the aptamers were evaluated through South-Western blot analysis, enzyme-linked aptamer sorbent assay (ELASA), and aptamer-based histochemistry staining. The impact of the aptamers on the biological activity of HMGB1 was tested in the human acute monocytic leukemia cell line, THP-1.</p><p><strong>Results: </strong>An aptamer (H-ap25, dissociation constant = 8.20 ± 0.53 nmol/L) with high affinity for the HMGB1 B box was generated. Further experiments verified that H-ap25 can be used to detect HMGB1 in South-Western blot analysis, ELASA, and aptamer-based histochemistry staining. Moreover, H-ap25 significantly augmented HMGB1-induced expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Toll-like receptor 9 (TLR9), and activation of NF-κB in THP-1 cells.</p><p><strong>Conclusions: </strong>Our results demonstrated that H-ap25 can be used both as an enhancer of HMGB1 and as a probe in research.</p>","PeriodicalId":14595,"journal":{"name":"Iranian Journal of Pharmaceutical Research","volume":"23 1","pages":"e147246"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selection and Characterization of a DNA Aptamer Recognizing High Mobility Group Box 1 Protein (HMGB1) and Enhancing Its Pro-inflammatory Activity.\",\"authors\":\"Hanchao Li, Wengang Sun, Yanhua Huang, Qian Li, Hong Tian, Zhiming Hao, Yongwei Huo\",\"doi\":\"10.5812/ijpr-147246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.</p><p><strong>Objectives: </strong>This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.</p><p><strong>Methods: </strong>In this study, ssDNA aptamers were selected using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The affinity and specificity of the aptamers were evaluated through South-Western blot analysis, enzyme-linked aptamer sorbent assay (ELASA), and aptamer-based histochemistry staining. The impact of the aptamers on the biological activity of HMGB1 was tested in the human acute monocytic leukemia cell line, THP-1.</p><p><strong>Results: </strong>An aptamer (H-ap25, dissociation constant = 8.20 ± 0.53 nmol/L) with high affinity for the HMGB1 B box was generated. Further experiments verified that H-ap25 can be used to detect HMGB1 in South-Western blot analysis, ELASA, and aptamer-based histochemistry staining. Moreover, H-ap25 significantly augmented HMGB1-induced expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Toll-like receptor 9 (TLR9), and activation of NF-κB in THP-1 cells.</p><p><strong>Conclusions: </strong>Our results demonstrated that H-ap25 can be used both as an enhancer of HMGB1 and as a probe in research.</p>\",\"PeriodicalId\":14595,\"journal\":{\"name\":\"Iranian Journal of Pharmaceutical Research\",\"volume\":\"23 1\",\"pages\":\"e147246\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5812/ijpr-147246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/ijpr-147246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Selection and Characterization of a DNA Aptamer Recognizing High Mobility Group Box 1 Protein (HMGB1) and Enhancing Its Pro-inflammatory Activity.
Background: High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.
Objectives: This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.
Methods: In this study, ssDNA aptamers were selected using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The affinity and specificity of the aptamers were evaluated through South-Western blot analysis, enzyme-linked aptamer sorbent assay (ELASA), and aptamer-based histochemistry staining. The impact of the aptamers on the biological activity of HMGB1 was tested in the human acute monocytic leukemia cell line, THP-1.
Results: An aptamer (H-ap25, dissociation constant = 8.20 ± 0.53 nmol/L) with high affinity for the HMGB1 B box was generated. Further experiments verified that H-ap25 can be used to detect HMGB1 in South-Western blot analysis, ELASA, and aptamer-based histochemistry staining. Moreover, H-ap25 significantly augmented HMGB1-induced expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Toll-like receptor 9 (TLR9), and activation of NF-κB in THP-1 cells.
Conclusions: Our results demonstrated that H-ap25 can be used both as an enhancer of HMGB1 and as a probe in research.
期刊介绍:
The Iranian Journal of Pharmaceutical Research (IJPR) is a peer-reviewed multi-disciplinary pharmaceutical publication, scheduled to appear quarterly and serve as a means for scientific information exchange in the international pharmaceutical forum. Specific scientific topics of interest to the journal include, but are not limited to: pharmaceutics, industrial pharmacy, pharmacognosy, toxicology, medicinal chemistry, novel analytical methods for drug characterization, computational and modeling approaches to drug design, bio-medical experience, clinical investigation, rational drug prescribing, pharmacoeconomics, biotechnology, nanotechnology, biopharmaceutics and physical pharmacy.