双能计算机断层扫描对颈动脉粥样硬化斑块成分的鉴别。

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi
{"title":"双能计算机断层扫描对颈动脉粥样硬化斑块成分的鉴别。","authors":"Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi","doi":"10.1097/RLI.0000000000001153","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.</p><p><strong>Materials and methods: </strong>Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.</p><p><strong>Results: </strong>Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).</p><p><strong>Conclusions: </strong>We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation of Atherosclerotic Carotid Plaque Components With Dual-Energy Computed Tomography.\",\"authors\":\"Mueez Aizaz, Juul Bierens, Marion J J Gijbels, Tobien H C M L Schreuder, Narender P van Orshoven, Jan-Willem H C Daemen, Werner H Mess, Thomas Flohr, Robert J van Oostenbrugge, Alida A Postma, M Eline Kooi\",\"doi\":\"10.1097/RLI.0000000000001153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.</p><p><strong>Materials and methods: </strong>Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.</p><p><strong>Results: </strong>Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).</p><p><strong>Conclusions: </strong>We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.</p>\",\"PeriodicalId\":14486,\"journal\":{\"name\":\"Investigative Radiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RLI.0000000000001153\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001153","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:颈动脉斑块易损性是同侧卒中复发的一个强有力的预测因素,但使用传统的计算机断层扫描(CT)来区分斑块成分是不理想的。本研究的目的是评估双能CT (DECT)在磁共振成像(MRI)的有效原子序数和有效电子密度的基础上表征动脉粥样硬化斑块成分的能力,并在可能的情况下,以组织学为参考标准。材料和方法:近期脑缺血且颈动脉斑块≥2mm的患者行ct血管造影和MRI检查。一个亚组行颈动脉内膜切除术。训练有素的观察者通过组织学或MRI描述斑块成分,独立于计算机断层血管造影。DECT与MRI和/或组织学同时登记。在DECT上描绘斑块内出血(IPH)、富含脂质的坏死核心(LRNC)、纤维组织和钙化,并在衍生队列(n = 55)中测定ρeff和Zeff值。在ρ efff - zeffs聚类图中评价这些成分的空间分离性。确定了最佳区分斑块特征的范围。为了验证,在验证队列(n = 29)中,使用这些ρ - zeff范围和基于文献的Hounsfield单位(HU)范围对斑块成分进行量化,并与MRI体积相关。结果:84例受试者(68±8岁;55名男性)进行评估。在衍生队列中,斑块成分在聚类图上分离良好,其范围如下:IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75,纤维组织:ρeff < 1.15, Zeff > 8.75,钙化:ρeff > 1.15, Zeff > 0。在验证队列中,纤维组织斑块体积(r = 0.69, P < 0.001)、LRNC (r = 0.94, P < 0.001)、IPH (r = 0.35, P = 0.03)和钙化(r = 0.70, P < 0.001)与基于ρ - zeff的MRI斑块体积存在显著相关性。纤维组织斑块体积(r = 0.40, P = 0.02)、LRNC (r = 0.86, P < 0.001)和钙化(r = 0.47, P = 0.005)的相关性较低,与IPH无相关性(r = 0.02, P = 0.45)。结论:我们确定了斑块评估的ρef - zeff范围。基于ρ - zeffs的体积与LRNC、纤维组织和钙化的MRI表现出很强到很强的相关性,与IPH的相关性较弱。与基于huf的容积相比,基于ρ - zefft的容积与MRI对所有斑块成分的一致性更好,这突出了DECT在识别易损斑块患者方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiation of Atherosclerotic Carotid Plaque Components With Dual-Energy Computed Tomography.

Objectives: Carotid plaque vulnerability is a strong predictor of recurrent ipsilateral stroke, but differentiation of plaque components using conventional computed tomography (CT) is suboptimal. The aim of our study was to evaluate the ability of dual-energy CT (DECT) to characterize atherosclerotic carotid plaque components based on the effective atomic number and effective electron density using magnetic resonance imaging (MRI) and, where possible, histology as the reference standard.

Materials and methods: Patients with recent cerebral ischemia and a ≥2-mm carotid plaque underwent computed tomography angiography and MRI. A subgroup underwent carotid endarterectomy. Trained observers delineated plaque components on histology or MRI, independent of computed tomography angiography. DECT was coregistered with MRI and/or histology. Intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous tissue, and calcifications were delineated on DECT, and ρeff and Zeff values were determined in the derivation cohort (n = 55). Spatial separation of these components was evaluated in a ρeff-Zeff-cluster plot. Ranges that optimally differentiate plaque features were determined. For validation, plaque components were quantified in the validation cohort (n = 29) using these ρeff-Zeff ranges and literature-based Hounsfield unit (HU) ranges and correlated to MRI volumes.

Results: Eighty-four participants (68 ± 8 years; 55 male) were evaluated. In the derivation cohort, plaque components were well separated on the cluster plot, resulting in the following ranges: IPH:ρeff < 1.15, Zeff < 7.5, LRNC:ρeff < 1.15, Zeff:7.5-8.75, fibrous tissue:ρeff < 1.15, Zeff > 8.75, and calcifications: ρeff > 1.15, Zeff > 0. In the validation cohort, significant correlations were found between ρeff-Zeff-based and MRI plaque volumes for fibrous tissue (r = 0.69, P < 0.001), LRNC (r = 0.94, P < 0.001), IPH (r = 0.35, P = 0.03), and calcifications (r = 0.70, P < 0.001). Lower correlations were found between HU-based and MRI plaque volumes for fibrous tissue (r = 0.40, P = 0.02), LRNC (r = 0.86, P < 0.001), and calcifications (r = 0.47, P = 0.005), with no correlation for IPH (r = 0.02, P = 0.45).

Conclusions: We determined ρeff-Zeff ranges for plaque assessment. ρeff-Zeff-based volumes showed strong-to-very strong correlations with MRI for LRNC, fibrous tissue, and calcifications and a weak correlation for IPH. ρeff-Zeff-based volumes demonstrated superior agreement with MRI for all plaque components compared with HU-based volumes, highlighting the potential of DECT for the identification of patients with vulnerable plaques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信