{"title":"circ_0004662通过与hnRNPM相互作用促进结直肠癌的进展。","authors":"Yang Zhang, Jian Wang, Ruiliang Quan, Lihua Lyu","doi":"10.3892/ijo.2025.5720","DOIUrl":null,"url":null,"abstract":"<p><p>Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells. circ_0004662 knockdown inhibited migration of CRC cells <i>in vitro</i> and <i>in vivo</i>; would healing and Transwell assays showed that circ_0004662 overexpression contributed to CRC migration. Nuclear cytoplasmic analysis and fluorescence <i>in situ</i> hybridization revealed localization of circ_0004662 in the nucleus and cytoplasm. CircRNADB databases predicted that circ_0004662 exhibited translational potential and liquid chromatography‑mass spectrometry (LC‑MS) of circ_0004662 pull‑down products suggested that circ_0004662 bound to multiple ribosomal subunits. However, peptide products of 149aa translated by circ_0004662, with a molecular weight of ~17 kDa were not detected. Nevertheless, LC‑MS analysis indicated that circ_0004662 bound multiple proteins. Immunoprecipitation of RNA‑binding proteins revealed that circ_0004662 bound to heterogeneous nuclear ribonucleoprotein M (hnRNPM) and that hnRNPM interference decreased circ_0004662 expression, thereby affecting CRC progression. In summary, circ_0004662 was significantly upregulated in CRC. As a non‑coding RNA, it may promote CRC progression by binding to hnRNPM, which may serve as a potential target for treating CRC.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"66 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753766/pdf/","citationCount":"0","resultStr":"{\"title\":\"circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM.\",\"authors\":\"Yang Zhang, Jian Wang, Ruiliang Quan, Lihua Lyu\",\"doi\":\"10.3892/ijo.2025.5720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells. circ_0004662 knockdown inhibited migration of CRC cells <i>in vitro</i> and <i>in vivo</i>; would healing and Transwell assays showed that circ_0004662 overexpression contributed to CRC migration. Nuclear cytoplasmic analysis and fluorescence <i>in situ</i> hybridization revealed localization of circ_0004662 in the nucleus and cytoplasm. CircRNADB databases predicted that circ_0004662 exhibited translational potential and liquid chromatography‑mass spectrometry (LC‑MS) of circ_0004662 pull‑down products suggested that circ_0004662 bound to multiple ribosomal subunits. However, peptide products of 149aa translated by circ_0004662, with a molecular weight of ~17 kDa were not detected. Nevertheless, LC‑MS analysis indicated that circ_0004662 bound multiple proteins. Immunoprecipitation of RNA‑binding proteins revealed that circ_0004662 bound to heterogeneous nuclear ribonucleoprotein M (hnRNPM) and that hnRNPM interference decreased circ_0004662 expression, thereby affecting CRC progression. In summary, circ_0004662 was significantly upregulated in CRC. As a non‑coding RNA, it may promote CRC progression by binding to hnRNPM, which may serve as a potential target for treating CRC.</p>\",\"PeriodicalId\":14175,\"journal\":{\"name\":\"International journal of oncology\",\"volume\":\"66 2\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijo.2025.5720\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2025.5720","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM.
Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells. circ_0004662 knockdown inhibited migration of CRC cells in vitro and in vivo; would healing and Transwell assays showed that circ_0004662 overexpression contributed to CRC migration. Nuclear cytoplasmic analysis and fluorescence in situ hybridization revealed localization of circ_0004662 in the nucleus and cytoplasm. CircRNADB databases predicted that circ_0004662 exhibited translational potential and liquid chromatography‑mass spectrometry (LC‑MS) of circ_0004662 pull‑down products suggested that circ_0004662 bound to multiple ribosomal subunits. However, peptide products of 149aa translated by circ_0004662, with a molecular weight of ~17 kDa were not detected. Nevertheless, LC‑MS analysis indicated that circ_0004662 bound multiple proteins. Immunoprecipitation of RNA‑binding proteins revealed that circ_0004662 bound to heterogeneous nuclear ribonucleoprotein M (hnRNPM) and that hnRNPM interference decreased circ_0004662 expression, thereby affecting CRC progression. In summary, circ_0004662 was significantly upregulated in CRC. As a non‑coding RNA, it may promote CRC progression by binding to hnRNPM, which may serve as a potential target for treating CRC.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.