{"title":"通过碳和氧化还原再平衡,工程解脂耶氏菌生产β-胡萝卜素。","authors":"Hojun Lee, Jinwoo Song, Sang Woo Seo","doi":"10.1186/s13036-025-00476-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.</p><p><strong>Results: </strong>The initial production level was increased by iterative overexpression of pathway genes with lycopene inhibition removal. For further improvement, two approaches that redirect the central carbon pathway were evaluated to increase NADPH regeneration and reduce ATP expenditure. Pushing flux through the pentose phosphate pathway and introducing NADP<sup>+</sup>-dependent glyceraldehyde-3-phosphate dehydrogenase were found to be more effective than the phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Furthermore, flux to the lipid biosynthesis pathway was moderately increased to better accommodate the increased β-carotene pool, resulting in the production level of 809.2 mg/L.</p><p><strong>Conclusions: </strong>The Y. lipolytica-based β-carotene production chassis was successfully developed through iterative overexpression of multiple pathways, central carbon pathway engineering and lipid pathway flux adjustment. The approach presented here provides insights into future endeavors to improve microbial terpenoid production capability.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"6"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing.\",\"authors\":\"Hojun Lee, Jinwoo Song, Sang Woo Seo\",\"doi\":\"10.1186/s13036-025-00476-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.</p><p><strong>Results: </strong>The initial production level was increased by iterative overexpression of pathway genes with lycopene inhibition removal. For further improvement, two approaches that redirect the central carbon pathway were evaluated to increase NADPH regeneration and reduce ATP expenditure. Pushing flux through the pentose phosphate pathway and introducing NADP<sup>+</sup>-dependent glyceraldehyde-3-phosphate dehydrogenase were found to be more effective than the phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Furthermore, flux to the lipid biosynthesis pathway was moderately increased to better accommodate the increased β-carotene pool, resulting in the production level of 809.2 mg/L.</p><p><strong>Conclusions: </strong>The Y. lipolytica-based β-carotene production chassis was successfully developed through iterative overexpression of multiple pathways, central carbon pathway engineering and lipid pathway flux adjustment. The approach presented here provides insights into future endeavors to improve microbial terpenoid production capability.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"6\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00476-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00476-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Engineering Yarrowia lipolytica for the production of β-carotene by carbon and redox rebalancing.
Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.
Results: The initial production level was increased by iterative overexpression of pathway genes with lycopene inhibition removal. For further improvement, two approaches that redirect the central carbon pathway were evaluated to increase NADPH regeneration and reduce ATP expenditure. Pushing flux through the pentose phosphate pathway and introducing NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase were found to be more effective than the phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Furthermore, flux to the lipid biosynthesis pathway was moderately increased to better accommodate the increased β-carotene pool, resulting in the production level of 809.2 mg/L.
Conclusions: The Y. lipolytica-based β-carotene production chassis was successfully developed through iterative overexpression of multiple pathways, central carbon pathway engineering and lipid pathway flux adjustment. The approach presented here provides insights into future endeavors to improve microbial terpenoid production capability.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.