Nan Tang, Wendi Li, Hezhen Shang, Zhen Yang, Zengyin Chen, Guangjun Shi
{"title":"鸢尾素介导的KEAP1降解可减轻氧化应激,改善胰腺炎。","authors":"Nan Tang, Wendi Li, Hezhen Shang, Zhen Yang, Zengyin Chen, Guangjun Shi","doi":"10.1007/s12026-024-09588-0","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"37"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irisin-mediated KEAP1 degradation alleviates oxidative stress and ameliorates pancreatitis.\",\"authors\":\"Nan Tang, Wendi Li, Hezhen Shang, Zhen Yang, Zengyin Chen, Guangjun Shi\",\"doi\":\"10.1007/s12026-024-09588-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.</p>\",\"PeriodicalId\":13389,\"journal\":{\"name\":\"Immunologic Research\",\"volume\":\"73 1\",\"pages\":\"37\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunologic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09588-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09588-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Irisin-mediated KEAP1 degradation alleviates oxidative stress and ameliorates pancreatitis.
Oxidative stress (OS) injury is pivotal in acute pancreatitis (AP) pathogenesis, contributing to inflammatory cascades. Irisin, a ubiquitous cytokine, exhibits antioxidant properties. However, the role of irisin in AP remains inconclusive. Our study aims to elucidate irisin expression in AP patients and investigate its mechanism of action to propose a novel treatment strategy for AP. Serum irisin levels in 65 AP patients were quantified using an enzyme-linked immunosorbent assay and correlated with disease severity scores. Core genes implicated in AP-related oxidative stress were identified and screened via bioinformatics analysis. The therapeutic efficacy of irisin in AP was confirmed using a murine cerulein-induced AP model. The intrinsic mechanism of irisin's antioxidative stress action was investigated and verified in pancreatic AR42J cells (Supplementary Fig. 1). Common targets shared by irisin and AP were further validated using a molecular docking model which was constructed for virtual docking analysis. This study investigated alterations in redox status in AP and found a significant reduction in serum irisin levels, correlating inversely with AP severity. In a murine AP model, we showed that irisin triggers an antioxidative stress program via the KEAP1 gene; this process helps reestablish redox balance by decreasing the buildup of reactive oxygen species (ROS) and suppressing the secretion of inflammatory mediators within pancreatic tissues Notably, increased KEAP1 expression counteracted the antioxidative effects of irisin. Our findings unveil a novel therapeutic mechanism for AP, wherein irisin inhibits KEAP1 to alleviate OS. Increasing irisin levels in vivo presents a promising strategy for AP treatment.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.