Tarek Jebrini, Michael Ruzicka, Felix Völk, Gerardo Jesus Ibarra Fonseca, Anna Pernpruner, Christopher Benesch, Elisabeth Valdinoci, Max von Baum, Martin Weigl, Marion Subklewe, Michael von Bergwelt-Baildon, Julia Roider, Julia Mayerle, Bernhard Heindl, Kristina Adorjan, Hans Christian Stubbe
{"title":"基于临床参数的机器学习模型预测COVID-19后患者工作能力障碍","authors":"Tarek Jebrini, Michael Ruzicka, Felix Völk, Gerardo Jesus Ibarra Fonseca, Anna Pernpruner, Christopher Benesch, Elisabeth Valdinoci, Max von Baum, Martin Weigl, Marion Subklewe, Michael von Bergwelt-Baildon, Julia Roider, Julia Mayerle, Bernhard Heindl, Kristina Adorjan, Hans Christian Stubbe","doi":"10.1007/s15010-024-02459-8","DOIUrl":null,"url":null,"abstract":"<p><p>The Post COVID-19 condition (PCC) is a complex disease affecting health and everyday functioning. This is well reflected by a patient's inability to work (ITW). In this study, we aimed to investigate factors associated with ITW (1) and to design a machine learning-based model for predicting ITW (2) twelve months after baseline. We selected patients from the post COVID care study (PCC-study) with data on their ability to work. To identify factors associated with ITW, we compared PCC patients with and without ITW. For constructing a predictive model, we selected nine clinical parameters: hospitalization during the acute SARS-CoV-2 infection, WHO severity of acute infection, presence of somatic comorbidities, presence of psychiatric comorbidities, age, height, weight, Karnofsky index, and symptoms. The model was trained to predict ITW twelve months after baseline using TensorFlow Decision Forests. Its performance was investigated using cross-validation and an independent testing dataset. In total, 259 PCC patients were included in this analysis. We observed that ITW was associated with dyslipidemia, worse patient reported outcomes (FSS, WHOQOL-BREF, PHQ-9), a higher rate of preexisting psychiatric conditions, and a more extensive medical work-up. The predictive model exhibited a mean AUC of 0.83 (95% CI: 0.78; 0.88) in the 10-fold cross-validation. In the testing dataset, the AUC was 0.76 (95% CI: 0.58; 0.93). In conclusion, we identified several factors associated with ITW. The predictive model performed very well. It could guide management decisions and help setting mid- to long-term treatment goals by aiding the identification of patients at risk of extended ITW.</p>","PeriodicalId":13600,"journal":{"name":"Infection","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting work ability impairment in post COVID-19 patients: a machine learning model based on clinical parameters.\",\"authors\":\"Tarek Jebrini, Michael Ruzicka, Felix Völk, Gerardo Jesus Ibarra Fonseca, Anna Pernpruner, Christopher Benesch, Elisabeth Valdinoci, Max von Baum, Martin Weigl, Marion Subklewe, Michael von Bergwelt-Baildon, Julia Roider, Julia Mayerle, Bernhard Heindl, Kristina Adorjan, Hans Christian Stubbe\",\"doi\":\"10.1007/s15010-024-02459-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Post COVID-19 condition (PCC) is a complex disease affecting health and everyday functioning. This is well reflected by a patient's inability to work (ITW). In this study, we aimed to investigate factors associated with ITW (1) and to design a machine learning-based model for predicting ITW (2) twelve months after baseline. We selected patients from the post COVID care study (PCC-study) with data on their ability to work. To identify factors associated with ITW, we compared PCC patients with and without ITW. For constructing a predictive model, we selected nine clinical parameters: hospitalization during the acute SARS-CoV-2 infection, WHO severity of acute infection, presence of somatic comorbidities, presence of psychiatric comorbidities, age, height, weight, Karnofsky index, and symptoms. The model was trained to predict ITW twelve months after baseline using TensorFlow Decision Forests. Its performance was investigated using cross-validation and an independent testing dataset. In total, 259 PCC patients were included in this analysis. We observed that ITW was associated with dyslipidemia, worse patient reported outcomes (FSS, WHOQOL-BREF, PHQ-9), a higher rate of preexisting psychiatric conditions, and a more extensive medical work-up. The predictive model exhibited a mean AUC of 0.83 (95% CI: 0.78; 0.88) in the 10-fold cross-validation. In the testing dataset, the AUC was 0.76 (95% CI: 0.58; 0.93). In conclusion, we identified several factors associated with ITW. The predictive model performed very well. It could guide management decisions and help setting mid- to long-term treatment goals by aiding the identification of patients at risk of extended ITW.</p>\",\"PeriodicalId\":13600,\"journal\":{\"name\":\"Infection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s15010-024-02459-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s15010-024-02459-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Predicting work ability impairment in post COVID-19 patients: a machine learning model based on clinical parameters.
The Post COVID-19 condition (PCC) is a complex disease affecting health and everyday functioning. This is well reflected by a patient's inability to work (ITW). In this study, we aimed to investigate factors associated with ITW (1) and to design a machine learning-based model for predicting ITW (2) twelve months after baseline. We selected patients from the post COVID care study (PCC-study) with data on their ability to work. To identify factors associated with ITW, we compared PCC patients with and without ITW. For constructing a predictive model, we selected nine clinical parameters: hospitalization during the acute SARS-CoV-2 infection, WHO severity of acute infection, presence of somatic comorbidities, presence of psychiatric comorbidities, age, height, weight, Karnofsky index, and symptoms. The model was trained to predict ITW twelve months after baseline using TensorFlow Decision Forests. Its performance was investigated using cross-validation and an independent testing dataset. In total, 259 PCC patients were included in this analysis. We observed that ITW was associated with dyslipidemia, worse patient reported outcomes (FSS, WHOQOL-BREF, PHQ-9), a higher rate of preexisting psychiatric conditions, and a more extensive medical work-up. The predictive model exhibited a mean AUC of 0.83 (95% CI: 0.78; 0.88) in the 10-fold cross-validation. In the testing dataset, the AUC was 0.76 (95% CI: 0.58; 0.93). In conclusion, we identified several factors associated with ITW. The predictive model performed very well. It could guide management decisions and help setting mid- to long-term treatment goals by aiding the identification of patients at risk of extended ITW.
期刊介绍:
Infection is a journal dedicated to serving as a global forum for the presentation and discussion of clinically relevant information on infectious diseases. Its primary goal is to engage readers and contributors from various regions around the world in the exchange of knowledge about the etiology, pathogenesis, diagnosis, and treatment of infectious diseases, both in outpatient and inpatient settings.
The journal covers a wide range of topics, including:
Etiology: The study of the causes of infectious diseases.
Pathogenesis: The process by which an infectious agent causes disease.
Diagnosis: The methods and techniques used to identify infectious diseases.
Treatment: The medical interventions and strategies employed to treat infectious diseases.
Public Health: Issues of local, regional, or international significance related to infectious diseases, including prevention, control, and management strategies.
Hospital Epidemiology: The study of the spread of infectious diseases within healthcare settings and the measures to prevent nosocomial infections.
In addition to these, Infection also includes a specialized "Images" section, which focuses on high-quality visual content, such as images, photographs, and microscopic slides, accompanied by brief abstracts. This section is designed to highlight the clinical and diagnostic value of visual aids in the field of infectious diseases, as many conditions present with characteristic clinical signs that can be diagnosed through inspection, and imaging and microscopy are crucial for accurate diagnosis. The journal's comprehensive approach ensures that it remains a valuable resource for healthcare professionals and researchers in the field of infectious diseases.