Hyun-Jun Kim, Junyoung Park, Sumin Song, Huilin Cheng, Jaehoon Baek, Gap-Don Kim
{"title":"牛肉品质提高技术:目前的方法和未来的方向。","authors":"Hyun-Jun Kim, Junyoung Park, Sumin Song, Huilin Cheng, Jaehoon Baek, Gap-Don Kim","doi":"10.5851/kosfa.2024.e125","DOIUrl":null,"url":null,"abstract":"<p><p>The quality grade of cow meat is often lower than that of steer meat, resulting in economic losses and reduced consumer satisfaction. This review explores various strategies for improving the quality of cow meat, with a focus on slaughter and post-slaughter practices. Certain slaughter methods, including electrical stimulation and suspension techniques, have been shown to improve meat tenderness by alleviating rigor mortis and inducing an increase in sarcomere length. Electrical stimulation triggers an increase in calcium release, which activates proteolytic enzymes, including calpain, resulting in the breakdown of muscle fibers. In contrast, suspension methods, including pelvic suspension, utilize gravity to maintain muscle elasticity. Post-slaughter treatments, which include wet and dry aging, have varying effects on the tenderness and flavor of meat. Wet aging helps retain moisture and activate the meat-tenderizing enzymes, whereas dry aging enhances flavor through moisture evaporation and microbial activity. Several patented technologies, which include electrical stimulation combined with suspension methods, heat treatments, and microbial pre-treatment, have been developed to further improve the tenderness and flavor of meat during slaughter and aging. The application of these techniques promise significant enhancement in the quality and consumer appeal of cow meat.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"45 1","pages":"185-198"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743845/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quality Enhancement Techniques for Cow Meat: Current Approaches and Future Directions.\",\"authors\":\"Hyun-Jun Kim, Junyoung Park, Sumin Song, Huilin Cheng, Jaehoon Baek, Gap-Don Kim\",\"doi\":\"10.5851/kosfa.2024.e125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quality grade of cow meat is often lower than that of steer meat, resulting in economic losses and reduced consumer satisfaction. This review explores various strategies for improving the quality of cow meat, with a focus on slaughter and post-slaughter practices. Certain slaughter methods, including electrical stimulation and suspension techniques, have been shown to improve meat tenderness by alleviating rigor mortis and inducing an increase in sarcomere length. Electrical stimulation triggers an increase in calcium release, which activates proteolytic enzymes, including calpain, resulting in the breakdown of muscle fibers. In contrast, suspension methods, including pelvic suspension, utilize gravity to maintain muscle elasticity. Post-slaughter treatments, which include wet and dry aging, have varying effects on the tenderness and flavor of meat. Wet aging helps retain moisture and activate the meat-tenderizing enzymes, whereas dry aging enhances flavor through moisture evaporation and microbial activity. Several patented technologies, which include electrical stimulation combined with suspension methods, heat treatments, and microbial pre-treatment, have been developed to further improve the tenderness and flavor of meat during slaughter and aging. The application of these techniques promise significant enhancement in the quality and consumer appeal of cow meat.</p>\",\"PeriodicalId\":12459,\"journal\":{\"name\":\"Food Science of Animal Resources\",\"volume\":\"45 1\",\"pages\":\"185-198\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743845/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science of Animal Resources\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5851/kosfa.2024.e125\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2024.e125","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Quality Enhancement Techniques for Cow Meat: Current Approaches and Future Directions.
The quality grade of cow meat is often lower than that of steer meat, resulting in economic losses and reduced consumer satisfaction. This review explores various strategies for improving the quality of cow meat, with a focus on slaughter and post-slaughter practices. Certain slaughter methods, including electrical stimulation and suspension techniques, have been shown to improve meat tenderness by alleviating rigor mortis and inducing an increase in sarcomere length. Electrical stimulation triggers an increase in calcium release, which activates proteolytic enzymes, including calpain, resulting in the breakdown of muscle fibers. In contrast, suspension methods, including pelvic suspension, utilize gravity to maintain muscle elasticity. Post-slaughter treatments, which include wet and dry aging, have varying effects on the tenderness and flavor of meat. Wet aging helps retain moisture and activate the meat-tenderizing enzymes, whereas dry aging enhances flavor through moisture evaporation and microbial activity. Several patented technologies, which include electrical stimulation combined with suspension methods, heat treatments, and microbial pre-treatment, have been developed to further improve the tenderness and flavor of meat during slaughter and aging. The application of these techniques promise significant enhancement in the quality and consumer appeal of cow meat.
期刊介绍:
Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.