{"title":"缺氧条件下重复短跑训练对急慢性氧化还原平衡调节的影响。","authors":"M Chambion-Diaz, R Faiss, V Pialoux, G P Millet","doi":"10.1080/10715762.2024.2443609","DOIUrl":null,"url":null,"abstract":"<p><p>Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, <i>n</i> = 20) or in normoxia, RSN, <i>n</i> = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (<i>p</i> < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (<i>p</i> < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (<i>p</i> = 0.0012 and <i>p</i> = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (<i>p</i> < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-8"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of repeated sprint training in hypoxia on acute and chronic redox balance modulation.\",\"authors\":\"M Chambion-Diaz, R Faiss, V Pialoux, G P Millet\",\"doi\":\"10.1080/10715762.2024.2443609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, <i>n</i> = 20) or in normoxia, RSN, <i>n</i> = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (<i>p</i> < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (<i>p</i> < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (<i>p</i> = 0.0012 and <i>p</i> = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (<i>p</i> < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2443609\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2443609","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
关于在缺氧条件下进行的高强度训练对氧化应激和抗氧化系统的影响,我们所知甚少。本研究的目的是评估在缺氧(RSH)条件下进行4周重复短跑训练对氧化还原平衡的潜在影响。40名训练有素的男性自行车手被分为两种不同的干预(RSH, n = 20)或正常缺氧,RSN, n = 20),并在4周训练之前(前)和之后(后)进行两次性能测试(重复冲刺能力(RSA)测试),氧化应激和抗氧化状态。测定血浆中抗氧化酶活性(超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶)、NO代谢产物(NOx:亚硝酸盐和硝酸盐)、铁还原抗氧化能力、丙二醛(MDA)、硝基酪氨酸和羰基。后,MDA和羰基增加(p = 0.0012和p = 0.0413)。在后,在RSA测试后,NOx下降,无论组(p
Effect of repeated sprint training in hypoxia on acute and chronic redox balance modulation.
Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, n = 20) or in normoxia, RSN, n = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (p < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (p < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (p = 0.0012 and p = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (p < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.