Junfeng Jiang, Jun Luo, Wenyu Zheng, Jiayi Liu, Hui Jiang, Cuiyun Wu, Hongjin Bai
{"title":"酸枣中酚类化合物指纹图谱的建立及不同前茬区光谱效应关系研究。","authors":"Junfeng Jiang, Jun Luo, Wenyu Zheng, Jiayi Liu, Hui Jiang, Cuiyun Wu, Hongjin Bai","doi":"10.3389/fchem.2024.1520586","DOIUrl":null,"url":null,"abstract":"<p><p>As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects. Variety differences were explored through chemical pattern recognition, and the spectrum-effect relationship between the fingerprint spectra of SZS and antioxidant activity was investigated using Pearson correlation analysis, grey relational analysis, and other methods. A total of 17 peaks were observed, among which 4 peaks were identified. They are gallic acid, catechin, spinosin, and scutellarin. The 22 SZS samples could be categorized into 3 groups, with cluster analysis and principal component analysis results being largely consistent. Spinosin, a marker compound of SZS, is a crucial contributor to the total antioxidant activity. In conclusion, the spectrum-effect relationship between phenolic compounds and the antioxidant activity of SZS was established, and the main characteristic components affecting antioxidant activity were identified, providing a reference for the quality evaluation of SZS and the development of its products.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1520586"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishment of fingerprint of phenolic compounds in <i>Semen Ziziphi Spinosae</i> and study on the spectrum-effect relationship based on different preceding cropping areas.\",\"authors\":\"Junfeng Jiang, Jun Luo, Wenyu Zheng, Jiayi Liu, Hui Jiang, Cuiyun Wu, Hongjin Bai\",\"doi\":\"10.3389/fchem.2024.1520586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects. Variety differences were explored through chemical pattern recognition, and the spectrum-effect relationship between the fingerprint spectra of SZS and antioxidant activity was investigated using Pearson correlation analysis, grey relational analysis, and other methods. A total of 17 peaks were observed, among which 4 peaks were identified. They are gallic acid, catechin, spinosin, and scutellarin. The 22 SZS samples could be categorized into 3 groups, with cluster analysis and principal component analysis results being largely consistent. Spinosin, a marker compound of SZS, is a crucial contributor to the total antioxidant activity. In conclusion, the spectrum-effect relationship between phenolic compounds and the antioxidant activity of SZS was established, and the main characteristic components affecting antioxidant activity were identified, providing a reference for the quality evaluation of SZS and the development of its products.</p>\",\"PeriodicalId\":12421,\"journal\":{\"name\":\"Frontiers in Chemistry\",\"volume\":\"12 \",\"pages\":\"1520586\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3389/fchem.2024.1520586\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1520586","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Establishment of fingerprint of phenolic compounds in Semen Ziziphi Spinosae and study on the spectrum-effect relationship based on different preceding cropping areas.
As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects. Variety differences were explored through chemical pattern recognition, and the spectrum-effect relationship between the fingerprint spectra of SZS and antioxidant activity was investigated using Pearson correlation analysis, grey relational analysis, and other methods. A total of 17 peaks were observed, among which 4 peaks were identified. They are gallic acid, catechin, spinosin, and scutellarin. The 22 SZS samples could be categorized into 3 groups, with cluster analysis and principal component analysis results being largely consistent. Spinosin, a marker compound of SZS, is a crucial contributor to the total antioxidant activity. In conclusion, the spectrum-effect relationship between phenolic compounds and the antioxidant activity of SZS was established, and the main characteristic components affecting antioxidant activity were identified, providing a reference for the quality evaluation of SZS and the development of its products.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.