{"title":"索特塞普治疗肺动脉高压及其他疾病。","authors":"Rosalinda Madonna, Sandra Ghelardoni","doi":"10.1111/eci.14386","DOIUrl":null,"url":null,"abstract":"<p><p>Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2. In this way, sotatercept activates an antiproliferative signalling to the cells of the pulmonary arteries and arterioles with the aim of rebalancing the proliferative and antiproliferative pathway that characterizes the pulmonary arterial hypertension (PAH). Sotatercept is indicated for the treatment of group 1 PAH in combination with drugs that act through the endothelin receptor, nitric oxide or prostacyclin. Its effects, demonstrated in the STELLAR study, are the improvement of exercise capacity and the FC-WHO functional class, together with the reduction of the risk of clinical worsening events. In addition to its antiremodeling effects on the pulmonary circulation, sotatercept has several haematological effects that could suggest its use in the treatment of some blood disorders other than PAH. In this review, we will discuss the effects of the drug on PAH and in parallel provide an in-depth overview of its application in haematological disorders, focusing on clinical and preclinical studies.</p>","PeriodicalId":12013,"journal":{"name":"European Journal of Clinical Investigation","volume":" ","pages":"e14386"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sotatercept in pulmonary hypertension and beyond.\",\"authors\":\"Rosalinda Madonna, Sandra Ghelardoni\",\"doi\":\"10.1111/eci.14386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2. In this way, sotatercept activates an antiproliferative signalling to the cells of the pulmonary arteries and arterioles with the aim of rebalancing the proliferative and antiproliferative pathway that characterizes the pulmonary arterial hypertension (PAH). Sotatercept is indicated for the treatment of group 1 PAH in combination with drugs that act through the endothelin receptor, nitric oxide or prostacyclin. Its effects, demonstrated in the STELLAR study, are the improvement of exercise capacity and the FC-WHO functional class, together with the reduction of the risk of clinical worsening events. In addition to its antiremodeling effects on the pulmonary circulation, sotatercept has several haematological effects that could suggest its use in the treatment of some blood disorders other than PAH. In this review, we will discuss the effects of the drug on PAH and in parallel provide an in-depth overview of its application in haematological disorders, focusing on clinical and preclinical studies.</p>\",\"PeriodicalId\":12013,\"journal\":{\"name\":\"European Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"e14386\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/eci.14386\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/eci.14386","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2. In this way, sotatercept activates an antiproliferative signalling to the cells of the pulmonary arteries and arterioles with the aim of rebalancing the proliferative and antiproliferative pathway that characterizes the pulmonary arterial hypertension (PAH). Sotatercept is indicated for the treatment of group 1 PAH in combination with drugs that act through the endothelin receptor, nitric oxide or prostacyclin. Its effects, demonstrated in the STELLAR study, are the improvement of exercise capacity and the FC-WHO functional class, together with the reduction of the risk of clinical worsening events. In addition to its antiremodeling effects on the pulmonary circulation, sotatercept has several haematological effects that could suggest its use in the treatment of some blood disorders other than PAH. In this review, we will discuss the effects of the drug on PAH and in parallel provide an in-depth overview of its application in haematological disorders, focusing on clinical and preclinical studies.
期刊介绍:
EJCI considers any original contribution from the most sophisticated basic molecular sciences to applied clinical and translational research and evidence-based medicine across a broad range of subspecialties. The EJCI publishes reports of high-quality research that pertain to the genetic, molecular, cellular, or physiological basis of human biology and disease, as well as research that addresses prevalence, diagnosis, course, treatment, and prevention of disease. We are primarily interested in studies directly pertinent to humans, but submission of robust in vitro and animal work is also encouraged. Interdisciplinary work and research using innovative methods and combinations of laboratory, clinical, and epidemiological methodologies and techniques is of great interest to the journal. Several categories of manuscripts (for detailed description see below) are considered: editorials, original articles (also including randomized clinical trials, systematic reviews and meta-analyses), reviews (narrative reviews), opinion articles (including debates, perspectives and commentaries); and letters to the Editor.