全原子分子动力学模拟评价synaptotagmin-1作用模型。

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Josep Rizo, Klaudia Jaczynska, Christian Rosenmund
{"title":"全原子分子动力学模拟评价synaptotagmin-1作用模型。","authors":"Josep Rizo, Klaudia Jaczynska, Christian Rosenmund","doi":"10.1002/2211-5463.13966","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotransmitter release is triggered in microseconds by the two C<sub>2</sub> domains of the Ca<sup>2+</sup> sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C<sub>2</sub>B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca<sup>2+</sup>-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca<sup>2+</sup>-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca<sup>2+</sup>-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C<sub>2</sub> domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca<sup>2+</sup>-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C<sub>2</sub> domains, but such bridging or the presence of the C<sub>2</sub> domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C<sub>2</sub> domains away from the site of fusion, orienting them such that they trigger release through a remote action.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of synaptotagmin-1 action models by all-atom molecular dynamics simulations.\",\"authors\":\"Josep Rizo, Klaudia Jaczynska, Christian Rosenmund\",\"doi\":\"10.1002/2211-5463.13966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurotransmitter release is triggered in microseconds by the two C<sub>2</sub> domains of the Ca<sup>2+</sup> sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C<sub>2</sub>B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca<sup>2+</sup>-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca<sup>2+</sup>-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca<sup>2+</sup>-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C<sub>2</sub> domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca<sup>2+</sup>-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C<sub>2</sub> domains, but such bridging or the presence of the C<sub>2</sub> domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C<sub>2</sub> domains away from the site of fusion, orienting them such that they trigger release through a remote action.</p>\",\"PeriodicalId\":12187,\"journal\":{\"name\":\"FEBS Open Bio\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Open Bio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/2211-5463.13966\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.13966","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经递质释放在微秒内由Ca2+传感器synaptotagmin-1的两个C2结构域和SNARE复合物触发,后者形成连接囊泡和质膜的四螺旋束。synaptotagmin-1 C2B结构域通过“主界面”与SNARE复合体结合,但Ca2+感应与膜融合的耦合机制尚不清楚。广泛的模型假设synaptotagmin-1 Ca2+结合环通过诱导膜曲率、扰乱脂质双层或帮助桥接膜来加速膜融合,但这些模型似乎与SNARE通过主界面结合不兼容,主界面使Ca2+结合环远离融合位点。为了验证这些模型,我们对桥接囊泡和扁平双分子层的SNARE复合物进行了分子动力学模拟,包括不同构型的synaptotagin -1 C2结构域。我们的数据不支持插入synaptotagmin-1 Ca2+结合环导致大量膜曲率或脂质双分子层的主要扰动,从而促进膜融合的概念。我们观察到通过synaptotagmin-1 C2结构域的膜桥接,但这种桥接或C2结构域在融合位点附近的存在阻碍了SNAREs将膜聚集在一起的作用。这些结果反驳了预测synaptotagin -1通过诱导膜曲率、扰乱双层或桥接膜来触发神经递质释放的模型。相反,我们的数据支持这样的假设,即通过主界面的结合使synaptotagin -1 C2结构域远离融合位点,使它们定向,从而通过远程作用触发释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of synaptotagmin-1 action models by all-atom molecular dynamics simulations.

Neurotransmitter release is triggered in microseconds by the two C2 domains of the Ca2+ sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 C2B domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca2+-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca2+-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca2+-binding loops away from the fusion site. To test these models, we performed molecular dynamics simulations of SNARE complexes bridging a vesicle and a flat bilayer, including the synaptotagmin-1 C2 domains in various configurations. Our data do not support the notion that insertion of the synaptotagmin-1 Ca2+-binding loops causes substantial membrane curvature or major perturbations of the lipid bilayers that could facilitate membrane fusion. We observed membrane bridging by the synaptotagmin-1 C2 domains, but such bridging or the presence of the C2 domains near the site of fusion hindered the action of the SNAREs in bringing the membranes together. These results argue against models predicting that synaptotagmin-1 triggers neurotransmitter release by inducing membrane curvature, perturbing bilayers or bridging membranes. Instead, our data support the hypothesis that binding via the primary interface keeps the synaptotagmin-1 C2 domains away from the site of fusion, orienting them such that they trigger release through a remote action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Open Bio
FEBS Open Bio BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
5.10
自引率
0.00%
发文量
173
审稿时长
10 weeks
期刊介绍: FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community. FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信