Chengcheng Wang, Yuhang Tang, Tao Yang, Yuhao Wang, Zihui Niu, Kang Zhang, Ning Lin, Qun Li
{"title":"肠道菌群、炎症细胞因子、外周免疫细胞、血浆代谢组与帕金森病的因果关系:一项中介孟德尔随机研究","authors":"Chengcheng Wang, Yuhang Tang, Tao Yang, Yuhao Wang, Zihui Niu, Kang Zhang, Ning Lin, Qun Li","doi":"10.1111/ejn.16665","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730). We used two-step Mendelian randomization (MR) mediated analysis to investigate possible pathways from intestinal microbiota to PD mediated by inflammatory cytokines, peripheral immune cells and plasma metabolites. MR has revealed the causal effects of 19 intestinal microbiota, 1 inflammatory cytokine and 12 plasma metabolites on PD, whereas there is no significant causal relationship between immune cell count characteristics and the occurrence of PD. Mediation analysis showed that the associations between the genus Demequina and PD were mediated by tryptophan with mediated proportions of 17.51% (p = 0.0393). Our study demonstrates that genus Demequina may promote the occurrence of PD by reducing the levels of tryptophan.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 2","pages":"e16665"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Relationship Between Intestinal Microbiota, Inflammatory Cytokines, Peripheral Immune Cells, Plasma Metabolome and Parkinson's Disease: A Mediation Mendelian Randomization Study.\",\"authors\":\"Chengcheng Wang, Yuhang Tang, Tao Yang, Yuhao Wang, Zihui Niu, Kang Zhang, Ning Lin, Qun Li\",\"doi\":\"10.1111/ejn.16665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730). We used two-step Mendelian randomization (MR) mediated analysis to investigate possible pathways from intestinal microbiota to PD mediated by inflammatory cytokines, peripheral immune cells and plasma metabolites. MR has revealed the causal effects of 19 intestinal microbiota, 1 inflammatory cytokine and 12 plasma metabolites on PD, whereas there is no significant causal relationship between immune cell count characteristics and the occurrence of PD. Mediation analysis showed that the associations between the genus Demequina and PD were mediated by tryptophan with mediated proportions of 17.51% (p = 0.0393). Our study demonstrates that genus Demequina may promote the occurrence of PD by reducing the levels of tryptophan.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"61 2\",\"pages\":\"e16665\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ejn.16665\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.16665","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Causal Relationship Between Intestinal Microbiota, Inflammatory Cytokines, Peripheral Immune Cells, Plasma Metabolome and Parkinson's Disease: A Mediation Mendelian Randomization Study.
Parkinson's disease (PD) is a neurodegenerative disease involving multiple factors. We explored the connection between intestinal microbiome levels and PD by examining inflammatory cytokines, peripheral immune cell counts and plasma metabolomics as potential factors. By obtaining the Genome-Wide Association Study (GWAS) data needed for this study from GWAS Catalog, including summary data for 473 intestinal microbiota traits (N = 5959), 91 inflammatory cytokine traits (N = 14,824), 118 peripheral immune cell count traits (N = 3757), 1400 plasma metabolite traits (N = 8299) and PD traits (N = 482,730). We used two-step Mendelian randomization (MR) mediated analysis to investigate possible pathways from intestinal microbiota to PD mediated by inflammatory cytokines, peripheral immune cells and plasma metabolites. MR has revealed the causal effects of 19 intestinal microbiota, 1 inflammatory cytokine and 12 plasma metabolites on PD, whereas there is no significant causal relationship between immune cell count characteristics and the occurrence of PD. Mediation analysis showed that the associations between the genus Demequina and PD were mediated by tryptophan with mediated proportions of 17.51% (p = 0.0393). Our study demonstrates that genus Demequina may promote the occurrence of PD by reducing the levels of tryptophan.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.