对LEAP2生物学和生理功能的重要见解:超越饥饿激素拮抗的潜在作用。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Mario Perelló
{"title":"对LEAP2生物学和生理功能的重要见解:超越饥饿激素拮抗的潜在作用。","authors":"Mario Perelló","doi":"10.1210/endocr/bqaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical Insights Into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism.\",\"authors\":\"Mario Perelló\",\"doi\":\"10.1210/endocr/bqaf011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf011\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

肝脏表达的抗菌肽2 (LEAP2)最近作为一种新的激素出现,它通过生长激素分泌激素受体(GHSR),也称为胃饥饿素受体,来减少食物摄入和血糖。这一发现导致了GHSR功能动态的基本重新概念化,现在被理解为处于双重和对立的调节之下。LEAP2有几个显著的特点。LEAP2由肝细胞和肠细胞释放,这两种细胞缺乏经典的调节分泌机制,对营养信号的反应可能不同。即使在能量不足的情况下,血浆中的LEAP2浓度也高于ghrelin,并且通过抑制ghrelin依赖性和非ghrelin依赖性活性来调节GHSR。考虑到这些特征,LEAP2似乎在体内调节GHSR活性方面发挥了重要作用,超越了简单的ghrelin拮抗作用,对能量平衡的长期调节至关重要。对LEAP2功能的深入了解可能会澄清GHSR在不同生理背景下的功能含义,并为治疗肥胖、糖尿病和其他代谢疾病提供新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Insights Into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism.

Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信