大柴虎汤抗脓毒症急性肺损伤panoptosis机制探讨:网络药理学、生物信息学及实验验证。

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL
Drug Design, Development and Therapy Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S495225
Zhen Yang, Xingyu Kao, Lin Zhang, Na Huang, Jingli Chen, Mingfeng He
{"title":"大柴虎汤抗脓毒症急性肺损伤panoptosis机制探讨:网络药理学、生物信息学及实验验证。","authors":"Zhen Yang, Xingyu Kao, Lin Zhang, Na Huang, Jingli Chen, Mingfeng He","doi":"10.2147/DDDT.S495225","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.</p><p><strong>Methods: </strong>First, we identified the intersecting targets among DCHD, SALI, and PANoptosis using relevant databases and published literature. Then, protein-protein interaction (PPI) network, molecular docking, and functional enrichment analysis were conducted. In vivo, cecal ligation and puncture (CLP) was used to construct a sepsis mouse model, and the therapeutic effects of DCHD on SALI were evaluated using hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qRT-PCR), and ELISA. Finally, qRT-PCR, immunofluorescence staining, and Western blotting were used to verify the effect of DCHD-containing serum (DCHD-DS) on LPS-induced RAW 264.7 macrophages in vitro.</p><p><strong>Results: </strong>82 intersecting targets were identified by mapping the targets of DCHD, SALI, and PANoptosis. Enrichment analysis showed that DCHD against SALI via anti-PANoptosis by modulating tumor necrosis factor (TNF), AGE-RAGE, phosphoinositide 3-kinase (PI3K)-AKT, and Toll-like receptor signaling pathways by targeting Casp3, cellular tumor antigen p53 (TP53), B-cell lymphoma 2 (Bcl2), toll-like receptor-4 (TLR4), STAT3, STAT1, RELA, NF-κB1, myeloid cell leukemia-1 (MCL1), JUN, IL-1β, HSP90AA1, Casp9, Casp8, and Bcl2l1. Molecular docking analysis revealed that the key components of DCHD have a high binding affinity to the core targets. In vivo, DCHD improved lung histopathological injury, reduced inflammatory factor expression, and alleviated oxidative stress injury in lung tissues. In vitro, DCHD-DS alleviated cell morphology changes, the release of pro-inflammatory factors, and p65 nucleus aggregation. Furthermore, we verified that DCHD-DS inhibited PANoptosis by downregulating the PI3K/AKT/NF-κB signalling pathway.</p><p><strong>Conclusion: </strong>DCHD attenuates SALI by inhibiting PANoptosis via control of the PI3K/AKT/NF-κB pathway. Our study provides a solid foundation for investigating the mechanisms of DCHD and its clinical application in the treatment of SALI.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"349-368"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750123/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Anti-PANoptosis Mechanism of Dachaihu Decoction Against Sepsis-Induced Acute Lung Injury: Network Pharmacology, Bioinformatics, and Experimental Validation.\",\"authors\":\"Zhen Yang, Xingyu Kao, Lin Zhang, Na Huang, Jingli Chen, Mingfeng He\",\"doi\":\"10.2147/DDDT.S495225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.</p><p><strong>Methods: </strong>First, we identified the intersecting targets among DCHD, SALI, and PANoptosis using relevant databases and published literature. Then, protein-protein interaction (PPI) network, molecular docking, and functional enrichment analysis were conducted. In vivo, cecal ligation and puncture (CLP) was used to construct a sepsis mouse model, and the therapeutic effects of DCHD on SALI were evaluated using hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qRT-PCR), and ELISA. Finally, qRT-PCR, immunofluorescence staining, and Western blotting were used to verify the effect of DCHD-containing serum (DCHD-DS) on LPS-induced RAW 264.7 macrophages in vitro.</p><p><strong>Results: </strong>82 intersecting targets were identified by mapping the targets of DCHD, SALI, and PANoptosis. Enrichment analysis showed that DCHD against SALI via anti-PANoptosis by modulating tumor necrosis factor (TNF), AGE-RAGE, phosphoinositide 3-kinase (PI3K)-AKT, and Toll-like receptor signaling pathways by targeting Casp3, cellular tumor antigen p53 (TP53), B-cell lymphoma 2 (Bcl2), toll-like receptor-4 (TLR4), STAT3, STAT1, RELA, NF-κB1, myeloid cell leukemia-1 (MCL1), JUN, IL-1β, HSP90AA1, Casp9, Casp8, and Bcl2l1. Molecular docking analysis revealed that the key components of DCHD have a high binding affinity to the core targets. In vivo, DCHD improved lung histopathological injury, reduced inflammatory factor expression, and alleviated oxidative stress injury in lung tissues. In vitro, DCHD-DS alleviated cell morphology changes, the release of pro-inflammatory factors, and p65 nucleus aggregation. Furthermore, we verified that DCHD-DS inhibited PANoptosis by downregulating the PI3K/AKT/NF-κB signalling pathway.</p><p><strong>Conclusion: </strong>DCHD attenuates SALI by inhibiting PANoptosis via control of the PI3K/AKT/NF-κB pathway. Our study provides a solid foundation for investigating the mechanisms of DCHD and its clinical application in the treatment of SALI.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"19 \",\"pages\":\"349-368\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750123/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S495225\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S495225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:大柴胡汤是治疗脓毒症致急性肺损伤(SALI)的常用中药方。PANoptosis是一种新型的程序性细胞死亡。然而,DCHD通过抗panoptosis抗SALI的机制尚不清楚。方法:首先,我们利用相关数据库和已发表的文献,确定DCHD、SALI和PANoptosis之间的交叉靶点。然后进行蛋白-蛋白相互作用(PPI)网络、分子对接和功能富集分析。在体内,采用盲肠结扎穿刺法(CLP)构建脓毒症小鼠模型,采用苏木精和伊红(H&E)染色、实时荧光定量PCR (qRT-PCR)和酶联免疫吸附法(ELISA)评价DCHD对SALI的治疗作用。最后,采用qRT-PCR、免疫荧光染色和Western blotting验证含dchd血清(DCHD-DS)对lps诱导的RAW 264.7巨噬细胞的体外作用。结果:通过绘制DCHD、SALI和PANoptosis靶点图谱,鉴定出82个交叉靶点。富集分析表明,DCHD通过靶向Casp3、细胞肿瘤抗原p53 (TP53)、b细胞淋巴瘤2 (Bcl2)、toll样受体4 (TLR4)、STAT3、STAT1、RELA、NF-κB1、髓细胞白血病-1 (MCL1)、JUN、IL-1β、HSP90AA1、Casp9、Casp8和Bcl2l1,通过调节肿瘤坏死因子(TNF)、AGE-RAGE、磷酸肌醇激酶(PI3K)-AKT和toll样受体信号通路,通过抗panoptosis作用对抗SALI。分子对接分析表明,DCHD的关键组分与核心靶点具有较高的结合亲和力。在体内,DCHD改善肺组织病理损伤,降低炎症因子表达,减轻肺组织氧化应激损伤。在体外实验中,DCHD-DS减轻了细胞形态变化、促炎因子释放和p65核聚集。此外,我们证实DCHD-DS通过下调PI3K/AKT/NF-κB信号通路抑制PANoptosis。结论:DCHD通过控制PI3K/AKT/NF-κB通路抑制PANoptosis,从而减轻SALI。本研究为探讨冠心病的发病机制及其在SALI治疗中的临床应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Anti-PANoptosis Mechanism of Dachaihu Decoction Against Sepsis-Induced Acute Lung Injury: Network Pharmacology, Bioinformatics, and Experimental Validation.

Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.

Methods: First, we identified the intersecting targets among DCHD, SALI, and PANoptosis using relevant databases and published literature. Then, protein-protein interaction (PPI) network, molecular docking, and functional enrichment analysis were conducted. In vivo, cecal ligation and puncture (CLP) was used to construct a sepsis mouse model, and the therapeutic effects of DCHD on SALI were evaluated using hematoxylin and eosin (H&E) staining, quantitative real-time PCR (qRT-PCR), and ELISA. Finally, qRT-PCR, immunofluorescence staining, and Western blotting were used to verify the effect of DCHD-containing serum (DCHD-DS) on LPS-induced RAW 264.7 macrophages in vitro.

Results: 82 intersecting targets were identified by mapping the targets of DCHD, SALI, and PANoptosis. Enrichment analysis showed that DCHD against SALI via anti-PANoptosis by modulating tumor necrosis factor (TNF), AGE-RAGE, phosphoinositide 3-kinase (PI3K)-AKT, and Toll-like receptor signaling pathways by targeting Casp3, cellular tumor antigen p53 (TP53), B-cell lymphoma 2 (Bcl2), toll-like receptor-4 (TLR4), STAT3, STAT1, RELA, NF-κB1, myeloid cell leukemia-1 (MCL1), JUN, IL-1β, HSP90AA1, Casp9, Casp8, and Bcl2l1. Molecular docking analysis revealed that the key components of DCHD have a high binding affinity to the core targets. In vivo, DCHD improved lung histopathological injury, reduced inflammatory factor expression, and alleviated oxidative stress injury in lung tissues. In vitro, DCHD-DS alleviated cell morphology changes, the release of pro-inflammatory factors, and p65 nucleus aggregation. Furthermore, we verified that DCHD-DS inhibited PANoptosis by downregulating the PI3K/AKT/NF-κB signalling pathway.

Conclusion: DCHD attenuates SALI by inhibiting PANoptosis via control of the PI3K/AKT/NF-κB pathway. Our study provides a solid foundation for investigating the mechanisms of DCHD and its clinical application in the treatment of SALI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信