Adieh Anvar, Mohammad Hossein Azizi, Hassan Ahmadi Gavlighi
{"title":"探讨天然深共晶溶剂对玉米蛋白结构和功能特性的影响。","authors":"Adieh Anvar, Mohammad Hossein Azizi, Hassan Ahmadi Gavlighi","doi":"10.1016/j.crfs.2024.100965","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis. Circular dichroism spectroscopy analysis indicated significant conformational change in modified zein, with decreased α-helix and increased random coil content. Notably, the NADES system leads to greater disruption of hydrogen bonds and facilitates the exposure of hydrophobic regions compared to water, ethanol, and acetic acid systems. This resulted in enhanced solubility, surface hydrophobicity, and free amine content in zein, indicating a more significant change in protein structure. In contrast, water and acetic acid solvents maintained more stable disulfide bonds within zein, which correlates with lower solubility and less unfolding. The NADES system promoted interactions between zein and its solvent components, improving emulsifying properties. Water, ethanol, and acetic acid systems had higher solubility in urea, thiourea, and dithiothreitol than the NADES system, revealing disruption of both covalent and noncovalent bonds in zein modified by NADES. Overall, this study highlights the superior ability of the NADES system to modify zein's structure and functionality compared to conventional solvents, suggesting its potential for enhancing protein applications in the industrial production of foods.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"100965"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the effect of natural deep eutectic solvents on zein: Structural and functional properties.\",\"authors\":\"Adieh Anvar, Mohammad Hossein Azizi, Hassan Ahmadi Gavlighi\",\"doi\":\"10.1016/j.crfs.2024.100965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis. Circular dichroism spectroscopy analysis indicated significant conformational change in modified zein, with decreased α-helix and increased random coil content. Notably, the NADES system leads to greater disruption of hydrogen bonds and facilitates the exposure of hydrophobic regions compared to water, ethanol, and acetic acid systems. This resulted in enhanced solubility, surface hydrophobicity, and free amine content in zein, indicating a more significant change in protein structure. In contrast, water and acetic acid solvents maintained more stable disulfide bonds within zein, which correlates with lower solubility and less unfolding. The NADES system promoted interactions between zein and its solvent components, improving emulsifying properties. Water, ethanol, and acetic acid systems had higher solubility in urea, thiourea, and dithiothreitol than the NADES system, revealing disruption of both covalent and noncovalent bonds in zein modified by NADES. Overall, this study highlights the superior ability of the NADES system to modify zein's structure and functionality compared to conventional solvents, suggesting its potential for enhancing protein applications in the industrial production of foods.</p>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"10 \",\"pages\":\"100965\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crfs.2024.100965\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100965","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Exploring the effect of natural deep eutectic solvents on zein: Structural and functional properties.
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis. Circular dichroism spectroscopy analysis indicated significant conformational change in modified zein, with decreased α-helix and increased random coil content. Notably, the NADES system leads to greater disruption of hydrogen bonds and facilitates the exposure of hydrophobic regions compared to water, ethanol, and acetic acid systems. This resulted in enhanced solubility, surface hydrophobicity, and free amine content in zein, indicating a more significant change in protein structure. In contrast, water and acetic acid solvents maintained more stable disulfide bonds within zein, which correlates with lower solubility and less unfolding. The NADES system promoted interactions between zein and its solvent components, improving emulsifying properties. Water, ethanol, and acetic acid systems had higher solubility in urea, thiourea, and dithiothreitol than the NADES system, revealing disruption of both covalent and noncovalent bonds in zein modified by NADES. Overall, this study highlights the superior ability of the NADES system to modify zein's structure and functionality compared to conventional solvents, suggesting its potential for enhancing protein applications in the industrial production of foods.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.